Predictors of 6-month mortality among nursing home residents: Diagnoses maybe more predictive than functional disability

Abstract

Objective: Loss of daily living functions can be a marker for end of life and possible hospice eligibility. Unfortunately, data on patient\u27s functional abilities is not available in all settings. In this study we compare predictive accuracy of two indices designed to predict 6-month mortality among nursing home residents. One is based on traditional measures of functional deterioration and the other on patients\u27 diagnoses and demography. Methods: We created the Hospice ELigibility Prediction (HELP) Index by examining mortality of 140,699 Veterans Administration (VA) nursing home residents. For these nursing home residents, the available data on history of hospital admissions were divided into training (112,897 cases) and validation (27,832 cases) sets. The training data were used to estimate the parameters of the HELP Index based on (1) diagnoses, (2) age on admission, and (3) number of diagnoses at admission. The validation data were used to assess the accuracy of predictions of the HELP Index. The cross-validated accuracy of the HELP Index was compared with the Barthel Index (BI) of functional ability obtained from 296,052 VA nursing home residents. A receiver operating characteristic curve was used to examine sensitivity and specificity of the predicted odds of mortality. Results: The area under the curve (AUC) for the HELP Index was 0.838. This was significantly (α \u3c0.01) higher than the AUC for the BI of 0.692. Conclusions: For nursing home residents, comorbid diagnoses predict 6-month mortality more accurately than functional status. The HELP Index can be used to estimate 6-month mortality from hospital data and can guide prognostic discussions prior to and following nursing home admission

    Similar works