160 research outputs found

    The Seroprevalence and Seroincidence of Enterovirus71 Infection in Infants and Children in Ho Chi Minh City, Viet Nam

    Get PDF
    Enterovirus 71 (EV71)-associated hand, foot and mouth disease has emerged as a serious public health problem in South East Asia over the last decade. To better understand the prevalence of EV71 infection, we determined EV71 seroprevalence and seroincidence amongst healthy infants and children in Ho Chi Minh City, Viet Nam. In a cohort of 200 newborns, 55% of cord blood samples contained EV71 neutralizing antibodies and these decayed to undetectable levels by 6 months of age in 98% of infants. The EV71 neutralizing antibody seroconversion rate was 5.6% in the first year and 14% in the second year of life. In children 5–15 yrs of age, seroprevalence of EV71 neutralizing antibodies was 84% and in cord blood it was 55%. Taken together, these data suggest EV71 force of infection is high and highlights the need for more research into its epidemiology and pathogenesis in high disease burden countries

    Rhizome Severing Increases Root Lifespan of Leymus chinensis in a Typical Steppe of Inner Mongolia

    Get PDF
    Root lifespan is an important trait that determines plants' ability to acquire and conserve soil resources. There have been several studies investigating characteristics of root lifespan of both woody and herbaceous species. However, most of the studies have focused on non-clonal plants, and there have been little data on root lifespan for clonal plants that occur widely in temperate grasslands.We investigated the effects of rhizome severing on overall root lifespan of Leymus chinensis, a clonal, dominant grass species in the temperate steppe in northern China, in a 2-year field study using modified rhizotron technique. More specifically, we investigated the effects of rhizome severing on root lifespan of roots born in different seasons and distributed at different soil depths. Rhizome severing led to an increase in the overall root lifespan from 81 to 103 days. The increase in root lifespan exhibited spatial and temporal characteristics such that it increased lifespan for roots distributed in the top two soil layers and for roots born in summer and spring, but it had no effect on lifespan of roots in the deep soil layer and born in autumn. We also examined the effect of rhizome severing on carbohydrate and N contents in roots, and found that root carbohydrate and N contents were not affected by rhizome severing. Further, we found that root lifespan of Stipa krylovii and Artemisia frigida, two dominant, non-clonal species in the temperate steppe, was significantly longer (118 d) than that of L. chinensis (81 d), and this value became comparable to that of L. chinensis under rhizome severing (103 d).We found that root lifespan in dominant, clonal L. chinensis was shorter than for the dominant, non-clonal species of S. krylovii and A. frigida. There was a substantial increase in the root lifespan of L. chinensis in response to severing their rhizomes, and this increase in root lifespan exhibited temporal and spatial characteristics. These findings suggest that the presence of rhizomes is likely to account for the observed short lifespan of clonal plant species in the temperate steppe

    Modeling Transmission Dynamics and Control of Vector-Borne Neglected Tropical Diseases

    Get PDF
    Neglected tropical diseases affect more than one billion people worldwide. The populations most impacted by such diseases are typically the most resource-limited. Mathematical modeling of disease transmission and cost-effectiveness analyses can play a central role in maximizing the utility of limited resources for neglected tropical diseases. We review the contributions that mathematical modeling has made to optimizing intervention strategies of vector-borne neglected diseases. We propose directions forward in the modeling of these diseases, including integrating new knowledge of vector and pathogen ecology, incorporating evolutionary responses to interventions, and expanding the scope of sensitivity analysis in order to achieve robust results

    Butyrate augments interferon-α-induced S phase accumulation and persistent tyrosine phosphorylation of cdc2 in K562 cells

    Get PDF
    Interferon-α (IFN-α) is a clinically useful cytokine for treatment of a variety of cancers, including chronic myelocytic leukaemia (CML). Most CML cells are sensitive to IFN-α; however, its biological effects on leukaemic cells are incompletely characterized. Here, we provide evidence that IFN-α induces a significant increase in the S phase population in human CML leukaemic cell line, K562, and that the S phase accumulation was augmented by sodium butyrate. In contrast, neither sodium butyrate alone, nor sodium butyrate plus IFN-γ, affected the cell cycle in K562 cells. These data suggest that the effect of sodium butyrate depended upon IFN-α-mediated signalling. The ability of leukaemic cells to exhibit the S phase accumulation after stimulation by IFN-α plus sodium butyrate correlated well with persistent tyrosine phosphorylation of cdc2, whereas treatment with IFN-γ plus sodium butyrate did not affect its phosphorylation levels. Considering that dephosphorylation of cdc2 leads to entry to the M phase, the persistent tyrosine phosphorylation of cdc2 may be associated with the S phase accumulation induced by IFN-α and sodium butyrate. In addition, another human CML leukaemic cell line, MEG-01, also showed the S phase accumulation after stimulation with IFN-α plus sodium butyrate. Taken together, our studies reveal a novel effect of sodium butyrate on the S phase accumulation and suggest its clinical application for a combination therapy with IFN-α, leading to a great improvement of clinical effects of IFN-α against CML cells. © 1999 Cancer Research Campaig

    Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism

    Get PDF
    7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg[superscript 2+]-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5′-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg[superscript 2+], which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified ([β [subscript 6] over α [subscript 3]]) protein core and an expanded cluster-binding motif, CX[subscript 14]CX[subscript 2]C.United States. Dept. of Energy. Office of Biological and Environmental ResearchUnited States. Dept. of Energy. Office of Basic Energy SciencesNational Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473)National Center for Research Resources (U.S.) (5P41RR015301-10)National Institute of General Medical Sciences (U.S.) (8 P41 GM 103403-10)United States. Dept. of Energy (Contract DE-AC02-06CH11357

    Integrating Signals from the T-Cell Receptor and the Interleukin-2 Receptor

    Get PDF
    T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R) signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells

    Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition

    Get PDF
    Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation

    Does clinical examination aid in the diagnosis of urinary tract infections in women? A systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinicians should be aware of the diagnostic values of various symptoms, signs and antecedents. This information is particularly important in primary care settings, where sophisticated diagnostic approaches are not always feasible. The aim of the study is to determine the probability that various symptoms, signs, antecedents and tests predict urinary tract infection (UTI) in women.</p> <p>Methods</p> <p>We conducted a systematic search of the MEDLINE and EMBASE databases to identify articles published in all languages through until December 2008. We particularly focused on studies that examined the diagnostic accuracy of at least one symptom, sign or patient antecedent related to the urinary tract. We included studies where urine culture, a gold standard, was preformed by primary care providers on female subjects aged at least 14 years. A meta-analysis of the likelihood ratio was performed to assess variables related to the urinary tract symptoms.</p> <p>Results</p> <p>Of the 1, 212 articles identified, 11 met the selection criteria. Dysuria, urgency, nocturia, sexual activity and urgency with dysuria were weak predictors of urinary tract infection, whereas increases in vaginal discharge and suprapubic pain were weak predictors of the absence of infection. Nitrites or leukocytes in the dipstick test are the only findings that clearly favored a diagnosis of UTI.</p> <p>Conclusions</p> <p>Clinical findings do not aid in the diagnosis of UTI among women who present with urinary symptoms. Vaginal discharge is a weak indicator of the absence of infection. The urine dipstick test was the most reliable tool for detecting UTI.</p

    Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition

    Get PDF
    Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation
    corecore