80 research outputs found

    Case-control vaccine effectiveness studies: Data collection, analysis and reporting results

    Get PDF
    The case-control methodology is frequently used to evaluate vaccine effectiveness post-licensure. The results of such studies provide important insight into the level of protection afforded by vaccines in a \u27real world\u27 context, and are commonly used to guide vaccine policy decisions. However, the potential for bias and confounding are important limitations to this method, and the results of a poorly conducted or incorrectly interpreted case-control study can mislead policies. In 2012, a group of experts met to review recent experience with case-control studies evaluating vaccine effectiveness; we summarize the recommendations of that group regarding best practices for data collection, analysis, and presentation of the results of case-control vaccine effectiveness studies. Vaccination status is the primary exposure of interest, but can be challenging to assess accurately and with minimal bias. Investigators should understand factors associated with vaccination as well as the availability of documented vaccination status in the study context; case-control studies may not be a valid method for evaluating vaccine effectiveness in settings where many children lack a documented immunization history. To avoid bias, it is essential to use the same methods and effort gathering vaccination data from cases and controls. Variables that may confound the association between illness and vaccination are also important to capture as completely as possible, and where relevant, adjust for in the analysis according to the analytic plan. In presenting results from case-control vaccine effectiveness studies, investigators should describe enrollment among eligible cases and controls as well as the proportion with no documented vaccine history. Emphasis should be placed on confidence intervals, rather than point estimates, of vaccine effectiveness. Case-control studies are a useful approach for evaluating vaccine effectiveness; however careful attention must be paid to the collection, analysis and presentation of the data in order to best inform evidence-based vaccine policies

    Case-control vaccine effectiveness studies: Preparation, design, and enrollment of cases and control

    Get PDF
    Case-control studies are commonly used to evaluate effectiveness of licensed vaccines after deployment in public health programs. Such studies can provide policy-relevant data on vaccine performance under \u27real world\u27 conditions, contributing to the evidence base to support and sustain introduction of new vaccines. However, case-control studies do not measure the impact of vaccine introduction on disease at a population level, and are subject to bias and confounding, which may lead to inaccurate results that can misinform policy decisions. In 2012, a group of experts met to review recent experience with case-control studies evaluating the effectiveness of several vaccines; here we summarize the recommendations of that group regarding best practices for planning, design and enrollment of cases and controls. Rigorous planning and preparation should focus on understanding the study context including healthcare-seeking and vaccination practices. Case-control vaccine effectiveness studies are best carried out soon after vaccine introduction because high coverage creates strong potential for confounding. Endpoints specific to the vaccine target are preferable to non-specific clinical syndromes since the proportion of non-specific outcomes preventable through vaccination may vary over time and place, leading to potentially confusing results. Controls should be representative of the source population from which cases arise, and are generally recruited from the community or health facilities where cases are enrolled. Matching of controls to cases for potential confounding factors is commonly used, although should be reserved for a limited number of key variables believed to be linked to both vaccination and disease. Case-control vaccine effectiveness studies can provide information useful to guide policy decisions and vaccine development, however rigorous preparation and design is essential

    Association of Variants at 1q32 and STAT3 with Ankylosing Spondylitis Suggests Genetic Overlap with Crohn's Disease

    Get PDF
    Ankylosing spondylitis (AS) is a common inflammatory arthritic condition. Overt inflammatory bowel disease (IBD) occurs in about 10% of AS patients, and in addition 70% of AS cases may have subclinical terminal ileitis. Spondyloarthritis is also common in IBD patients. We therefore tested Crohn's disease susceptibility genes for association with AS, aiming to identify pleiotropic genetic associations with both diseases. Genotyping was carried out using Sequenom and Applied Biosystems TaqMan and OpenArray technologies on 53 markers selected from 30 Crohn's disease associated genomic regions. We tested genotypes in a population of unrelated individual cases (n = 2,773) and controls (n = 2,215) of white European ancestry for association with AS. Statistical analysis was carried out using a Cochran-Armitage test for trend in PLINK. Strong association was detected at chr1q32 near KIF21B (rs11584383, P = 1.6×10−10, odds ratio (OR) = 0.74, 95% CI:0.68–0.82). Association with disease was also detected for 2 variants within STAT3 (rs6503695, P = 4.6×10−4. OR = 0.86 (95% CI:0.79–0.93); rs744166, P = 2.6×10−5, OR = 0.84 (95% CI:0.77–0.91)). Association was confirmed for IL23R (rs11465804, P = 1.2×10−5, OR = 0.65 (95% CI:0.54–0.79)), and further associations were detected for IL12B (rs10045431, P = 5.2×10−5, OR = 0.83 (95% CI:0.76–0.91)), CDKAL1 (rs6908425, P = 1.1×10−4, OR = 0.82 (95% CI:0.74–0.91)), LRRK2/MUC19 (rs11175593, P = 9.9×10−5, OR = 1.92 (95% CI: 1.38–2.67)), and chr13q14 (rs3764147, P = 5.9×10−4, OR = 1.19 (95% CI: 1.08–1.31)). Excluding cases with clinical IBD did not significantly affect these findings. This study identifies chr1q32 and STAT3 as ankylosing spondylitis susceptibility loci. It also further confirms association for IL23R and detects suggestive association with another 4 loci. STAT3 is a key signaling molecule within the Th17 lymphocyte differentiation pathway and further enhances the case for a major role of this T-lymphocyte subset in ankylosing spondylitis. Finally these findings suggest common aetiopathogenic pathways for AS and Crohn's disease and further highlight the involvement of common risk variants across multiple diseases

    Investigating the genetic association between ERAP1 and ankylosing spondylitis

    Get PDF
    A strong association between ERAP1 and ankylosing spondylitis (AS) was recently identified by the Wellcome Trust Case Control Consortium and the Australo-Anglo-American Spondylitis Consortium (WTCCC-TASC) study. ERAP1 is highly polymorphic with strong linkage disequilibrium evident across the gene. We therefore conducted a series of experiments to try to identify the primary genetic association(s) with ERAP1. We replicated the original associations in an independent set of 730 patients and 1021 controls, resequenced ERAP1 to define the full extent of coding polymorphisms and tested all variants in additional association studies. The genetic association with ERAP1 was independently confirmed; the strongest association was with rs30187 in the replication set (P = 3.4 × 10−3). When the data were combined with the original WTCCC-TASC study the strongest association was with rs27044 (P = 1.1 × 10−9). We identified 33 sequence polymorphisms in ERAP1, including three novel and eight known non-synonymous polymorphisms. We report several new associations between AS and polymorphisms distributed across ERAP1 from the extended case–control study, the most significant of which was with rs27434 (P = 4.7 × 10−7). Regression analysis failed to identify a primary association clearly; we therefore used data from HapMap to impute genotypes for an additional 205 non-coding SNPs located within and adjacent to ERAP1. A number of highly significant associations (P < 5 × 10−9) were identified in regulatory sequences which are good candidates for causing susceptibility to AS, possibly by regulating ERAP1 expression

    Case-control vaccine effectiveness studies: Preparation, design, and enrollment of cases and controls.

    Get PDF
    Case-control studies are commonly used to evaluate effectiveness of licensed vaccines after deployment in public health programs. Such studies can provide policy-relevant data on vaccine performance under 'real world' conditions, contributing to the evidence base to support and sustain introduction of new vaccines. However, case-control studies do not measure the impact of vaccine introduction on disease at a population level, and are subject to bias and confounding, which may lead to inaccurate results that can misinform policy decisions. In 2012, a group of experts met to review recent experience with case-control studies evaluating the effectiveness of several vaccines; here we summarize the recommendations of that group regarding best practices for planning, design and enrollment of cases and controls. Rigorous planning and preparation should focus on understanding the study context including healthcare-seeking and vaccination practices. Case-control vaccine effectiveness studies are best carried out soon after vaccine introduction because high coverage creates strong potential for confounding. Endpoints specific to the vaccine target are preferable to non-specific clinical syndromes since the proportion of non-specific outcomes preventable through vaccination may vary over time and place, leading to potentially confusing results. Controls should be representative of the source population from which cases arise, and are generally recruited from the community or health facilities where cases are enrolled. Matching of controls to cases for potential confounding factors is commonly used, although should be reserved for a limited number of key variables believed to be linked to both vaccination and disease. Case-control vaccine effectiveness studies can provide information useful to guide policy decisions and vaccine development, however rigorous preparation and design is essential

    Case-control vaccine effectiveness studies: Data collection, analysis and reporting results.

    Get PDF
    The case-control methodology is frequently used to evaluate vaccine effectiveness post-licensure. The results of such studies provide important insight into the level of protection afforded by vaccines in a 'real world' context, and are commonly used to guide vaccine policy decisions. However, the potential for bias and confounding are important limitations to this method, and the results of a poorly conducted or incorrectly interpreted case-control study can mislead policies. In 2012, a group of experts met to review recent experience with case-control studies evaluating vaccine effectiveness; we summarize the recommendations of that group regarding best practices for data collection, analysis, and presentation of the results of case-control vaccine effectiveness studies. Vaccination status is the primary exposure of interest, but can be challenging to assess accurately and with minimal bias. Investigators should understand factors associated with vaccination as well as the availability of documented vaccination status in the study context; case-control studies may not be a valid method for evaluating vaccine effectiveness in settings where many children lack a documented immunization history. To avoid bias, it is essential to use the same methods and effort gathering vaccination data from cases and controls. Variables that may confound the association between illness and vaccination are also important to capture as completely as possible, and where relevant, adjust for in the analysis according to the analytic plan. In presenting results from case-control vaccine effectiveness studies, investigators should describe enrollment among eligible cases and controls as well as the proportion with no documented vaccine history. Emphasis should be placed on confidence intervals, rather than point estimates, of vaccine effectiveness. Case-control studies are a useful approach for evaluating vaccine effectiveness; however careful attention must be paid to the collection, analysis and presentation of the data in order to best inform evidence-based vaccine policies

    BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis

    Get PDF
    Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
    corecore