20 research outputs found

    Protein-quality evaluation of complementary foods in Indian children

    Get PDF
    Background: The types of food in complementary feeding of infants and young children are important for growth and development. Food protein quality, as measured by the Digestible Indispensable Amino Acid Score (DIAAS), requires the determination of true ileal digestibility of indispensable amino acids (IAAs) in children. Objectives: First, the aim of this study was to measure the true ileal IAA digestibility of 4 (rice, finger millet, mung bean, and hen egg) commonly consumed complementary foods in children aged <2 y using the dual-isotope tracer method. Second, we calculated the DIAAS of complementary feeding diets and their relation to stunting in a representative Indian rural population. Design: Rice, finger millet, and mung bean were intrinsically labeled with deuterium oxide (2H2O), whereas egg was labeled through oral dosing of hens with a uniformly 2H-labeled amino acid mixture. True ileal IAA digestibility was determined by the dual-isotope tracer technique. The DIAAS of complementary food protein was calculated in children aged 1–3 y from a nationally representative survey to evaluate its relation with stunting. Results: True ileal IAA digestibility was lowest in mung bean (65.2% ± 7.1%), followed by finger millet (68.4 %± 5.3%) and rice (78.5% ± 3.5%), and was highest for egg (87.4% ± 4.0%). There was a significant inverse correlation of complementary food DIAAS with stunting in survey data (r = −0.66, P = 0.044). The addition of egg or milk to nationally representative complementary diets theoretically improved the DIAAS from 80 to 100. Conclusions: The true ileal IAA digestibility of 4 foods commonly consumed in complementary diets showed that the DIAAS was associated with stunting and reinforces the importance of including animal source food (ASF) in diets to improve growth. This trial was registered at http://ctri.nic.in/clinicaltrials/login.php as CTRI/2017/02/007921

    Five Dimensional Cosmological Models in General Relativity

    Full text link
    A Five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ\Lambda. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as Gt(1ω)G \sim t^{-(1-\omega)} whereas the variation for the cosmological constant follows as Λt2\Lambda \sim t^{-2}, Λ(R˙/R)2\Lambda \sim (\dot R/R)^2 and ΛR¨/R\Lambda \sim \ddot R/R where ω\omega is the equation of state parameter and RR is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Pairing as an instructional strategy to promote soft skills amongst clinical dental students

    Get PDF
    Training dentists today is challenging as they are expected to provide a wide range of dental care. In the provision of good dental care, soft skills are equally important as clinical skills. Therefore in dental education the development of soft skills are of prime concern. This study sought to identify the development of soft skills when dental students are paired in their clinical training. In this perception study, four open-ended items were used to elicit students’ feedback on the appropriateness of using clinical pairing as an instructional strategy to promote soft skills. The most frequently cited soft skills were teamwork (70%) and communication (25%) skills. However, both negative and positive behaviours were reported. As for critical thinking and problem solving skills, more positive behaviours were reported for abilities such as to explain, analyze, find ideas and alternative solutions, and make decisions. Leadership among peers was not evident as leading without legitimate authority could be a hindrance to its development. If clinical pairing is to be used as an effective instructional strategy to promote soft skills amongst students, clear guidelines need to be developed to prepare students to work in a dental team and the use of appropriate assessment tools can facilitate the development of these soft skills

    Pairing as an instructional strategy to promote soft skills amongst clinical dental students

    Get PDF
    Training dentists today is challenging as they are expected to provide a wide range of dental care. In the provision of good dental care, soft skills are equally important as clinical skills. Therefore in dental education the development of soft skills are of prime concern. This study sought to identify the development of soft skills when dental students are paired in their clinical training. In this perception study, four open-ended items were used to elicit students’ feedback on the appropriateness of using clinical pairing as an instructional strategy to promote soft skills. The most frequently cited soft skills were teamwork (70%) and communication (25%) skills. However, both negative and positive behaviours were reported. As for critical thinking and problem solving skills, more positive behaviours were reported for abilities such as to explain, analyze, find ideas and alternative solutions, and make decisions. Leadership among peers was not evident as leading without legitimate authority could be a hindrance to its development. If clinical pairing is to be used as an effective instructional strategy to promote soft skills amongst students, clear guidelines need to be developed to prepare students to work in a dental team and the use of appropriate assessment tools can facilitate the development of these soft skills

    Stability of Non-asymptotically flat thin-shell wormholes in generalized dilaton-axion gravity

    Full text link
    We construct a new type of thin-shell wormhole for non-asymptotically flat charged black holes in generalized dilaton-axion gravity inspired by low-energy string theory using cut-and-paste technique. We have shown that this thin shell wormhole is stable. The most striking feature of our model is that the total amount of exotic matter needed to support the wormhole can be reduced as desired with the suitable choice of the value of a parameter. Various other aspects of thin-shell wormhole are also analyzed.Comment: 15 pages and 11 figures. Minor revisions have been done. Accepted in Int.J.Theor.Phy

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Measurement of vector boson production cross sections and their ratios using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    Abstract available from publisher's website

    Measurement of the tt¯ cross section and its ratio to the Z production cross section using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive top-quark-pair production cross section σtt¯ and its ratio to the Z-boson production cross section have been measured in proton–proton collisions at √s = 13.6 TeV, using 29 fb−1 of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and b-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be σtt¯=850±3(stat.)±18(syst.)±20(lumi.) pb. The ratio of the tt¯ and the Z-boson production cross sections is also measured, where the Z-boson contribution is determined for inclusive e+e− and μ+μ− events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the tt¯ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, Rtt¯/Z=1.145±0.003(stat.)±0.021(syst.)±0.002(lumi.) is consistent with the Standard Model prediction using the PDF4LHC21 PDF set

    Effect of operators' experience and cement space on the marginal fit of an in-office digitally produced monolithic ceramic crown system

    No full text
    Objectives: To investigate the marginal accuracy of Cerec three-dimensional (3D) all-ceramic crowns, in terms of gap and overhang, and to analyze the "operators' experience" and "cement space" effects on the marginal fit. Method and Materials: Thirty virtual models were obtained from a metal master die by scanning by three different operators: operator 1 (novice), operator 2 (beginner), and operator 3 (expert) (n = 10). These were further divided into two subgroups of five each, based on the cement space settings: 10 μm and 20 μm. Monolithic ceramic crowns (n = 10) were designed and milled for each virtual model and subjected to marginal gap and overhang evaluation at six designated margin locations. The influence of operators' experience and cement space on the marginal fit of the crowns was assessed by performing Box tests and MANOVA (multiple analysis of variance) (α = .05). Kruskal Wallis test was also used to analyze the interactions between the operators' experience and the cement space. Results: The overall mean ± SD marginal gaps and overhangs for the Cerec 3D crowns, were 154 ± 56 μm and 74 ± 74 μm for novice, 158 ± 53 μm and 86 ± 66 μm for beginner, and 155 ± 52 μm and 47 ± 76 μm for expert, respectively. The MANOVA and Kruskal Wallis tests found no significant differences (P > .05) between the operators, in terms of gap and overhang, for all cement settings. Conclusion: The operator experience did not seem to influence the marginal accuracy of Cerec 3D fabricated crowns
    corecore