1,151 research outputs found

    Development and Analysis of Deterministic Privacy-Preserving Policies Using Non-Stochastic Information Theory

    Get PDF
    A deterministic privacy metric using non-stochastic information theory is developed. Particularly, minimax information is used to construct a measure of information leakage, which is inversely proportional to the measure of privacy. Anyone can submit a query to a trusted agent with access to a non-stochastic uncertain private dataset. Optimal deterministic privacy-preserving policies for responding to the submitted query are computed by maximizing the measure of privacy subject to a constraint on the worst-case quality of the response (i.e., the worst-case difference between the response by the agent and the output of the query computed on the private dataset). The optimal privacy-preserving policy is proved to be a piecewise constant function in the form of a quantization operator applied on the output of the submitted query. The measure of privacy is also used to analyze the performance of kk-anonymity methodology (a popular deterministic mechanism for privacy-preserving release of datasets using suppression and generalization techniques), proving that it is in fact not privacy-preserving.Comment: improved introduction and numerical exampl

    A Study of Truck Platooning Incentives Using a Congestion Game

    Full text link
    We introduce an atomic congestion game with two types of agents, cars and trucks, to model the traffic flow on a road over various time intervals of the day. Cars maximize their utility by finding a trade-off between the time they choose to use the road, the average velocity of the flow at that time, and the dynamic congestion tax that they pay for using the road. In addition to these terms, the trucks have an incentive for using the road at the same time as their peers because they have platooning capabilities, which allow them to save fuel. The dynamics and equilibria of this game-theoretic model for the interaction between car traffic and truck platooning incentives are investigated. We use traffic data from Stockholm to validate parts of the modeling assumptions and extract reasonable parameters for the simulations. We use joint strategy fictitious play and average strategy fictitious play to learn a pure strategy Nash equilibrium of this game. We perform a comprehensive simulation study to understand the influence of various factors, such as the drivers' value of time and the percentage of the trucks that are equipped with platooning devices, on the properties of the Nash equilibrium.Comment: Updated Introduction; Improved Literature Revie

    Modern developments in shear flow control with swirl

    Get PDF
    Passive and active control of swirling turbulent jets is experimentally investigated. Initial swirl distribution is shown to dominate the free jet evolution in the passive mode. Vortex breakdown, a manifestation of high intensity swirl, was achieved at below critical swirl number (S = 0.48) by reducing the vortex core diameter. The response of a swirling turbulent jet to single frequency, plane wave acoustic excitation was shown to depend strongly on the swirl number, excitation Strouhal number, amplitude of the excitation wave, and core turbulence in a low speed cold jet. A 10 percent reduction of the mean centerline velocity at x/D = 9.0 (and a corresponding increase in the shear layer momentum thickness) was achieved by large amplitude internal plane wave acoustic excitation. Helical instability waves of negative azimuthal wave numbers exhibit larger amplification rates than the plane waves in swirling free jets, according to hydrodynamic stability theory. Consequently, an active swirling shear layer control is proposed to include the generation of helical instability waves of arbitrary helicity and the promotion of modal interaction, through multifrequency forcing

    A Faithful Distributed Implementation of Dual Decomposition and Average Consensus Algorithms

    Full text link
    We consider large scale cost allocation problems and consensus seeking problems for multiple agents, in which agents are suggested to collaborate in a distributed algorithm to find a solution. If agents are strategic to minimize their own individual cost rather than the global social cost, they are endowed with an incentive not to follow the intended algorithm, unless the tax/subsidy mechanism is carefully designed. Inspired by the classical Vickrey-Clarke-Groves mechanism and more recent algorithmic mechanism design theory, we propose a tax mechanism that incentivises agents to faithfully implement the intended algorithm. In particular, a new notion of asymptotic incentive compatibility is introduced to characterize a desirable property of such class of mechanisms. The proposed class of tax mechanisms provides a sequence of mechanisms that gives agents a diminishing incentive to deviate from suggested algorithm.Comment: 8 page
    corecore