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Privacy-Preserving Policies Using Non-Stochastic

Information Theory
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Abstract—A deterministic privacy metric using non-stochastic
information theory is developed. Particularly, maximin infor-
mation is used to construct a measure of information leakage,
which is inversely proportional to the measure of privacy.
Anyone can submit a query to a trusted agent with access to a
non-stochastic uncertain private dataset. Optimal deterministic
privacy-preserving policies for responding to the submitted query
are computed by maximizing the measure of privacy subject to
a constraint on the worst-case quality of the response (i.e., the
worst-case difference between the response by the agent and the
output of the query computed on the private dataset). The opti-
mal privacy-preserving policy is proved to be a piecewise constant
function in the form of a quantization operator applied on the
output of the submitted query. The measure of privacy is also
used to analyze k-anonymity (a popular deterministic mechanism
for privacy-preserving release of datasets using suppression and
generalization techniques), proving that it is in fact not privacy-
preserving.

Index Terms—Non-stochastic Information Theory, Maximin
Information, Privacy, Piecewise Constant Function, Quantization.

I. INTRODUCTION

Advances in communication and computation engineering
have enabled the use of big data analysis for answering societal
challenges. These advances have motivated incorporation of
new tools for collection and analysis of datasets, and reporting
data-driven insights. The erosion of privacy caused by the
adoption of such tools has resulted in adoption of new rules
by governments, such as the General Data Protection Regula-
tion (GDPR) in the European Union, for protecting citizens,
customers, and their data.

Anonymization is most often used as a method of choice by
governments or companies alike for releasing private datasets1

to the broader public for analysis. Although popularly adopted,
anonymization has been proved to be insufficient for privacy
preservation [1]–[3]. Therefore, systematic methods for pri-
vacy preservation in a provable manner should be developed.

Differential privacy and its variants, such as local differen-
tial privacy and probabilistic differential privacy, form a cate-
gory of methodologies with provable privacy guarantees [4]–
[10]. These methods, in summary, rely on the use of random-
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ized policies, such as additive noise, to ensure that the statistics
of the reported outputs do not change noticeably by variations
in an individual entry of the dataset. This property ensures
that an adversary cannot reverse-engineer differentially-private
outputs to accurately estimate an individual private entry of
the dataset, even in the presense of side information. Various
studies have been devoted to finding “optimal” noise distri-
bution in differential privacy [11]–[13]; however, off-the-shelf
mechanisms, such as the additive Laplace and Gaussian noise
with scales proportional to the sensitivity of the submitted
query with respect to the individual entries of the dataset, are
often used to ensure differential privacy [5]. Note that the use
of randomized policies for privacy protection in itself is not
particularly new [14] but, prior to differential privacy, provable
guarantees were often missing.

Another methodology for privacy protection is the use of
information theoretic metrics dating back to the pioneering
work on secrecy in [15]. In the secrecy problem, a sender
wishes to devise an encoding scheme to create a secure
channel for communicating with a receiver while hiding her
data from an eavesdropper (similar to the setup of encryption).
The privacy problem with the emphasis on masking or equiv-
ocating of information from the intended primary receiver
(rather than an eavesdropper) or a secondary receiver with as
much information as the primary receiver have been studied
in [16]–[19]. Information-theoretic guarantees have been also
provided on the amount of leaked private information when
utilizing differential privacy [20], [21]. Furthermore, entropy,
mutual information, Kulback-Leiber divergence, and Fisher
information have been repeatedly used as measure of privacy
in [22]–[29].

A common thread or assumption among all these method-
ologies is that they utilize randomization for safeguarding
privacy. In fact, the definition of differential privacy assumes
the use of randomized functions and information theoretic
tools used so far have been based on randomized random
variables. However, many popular2 heuristic-based privacy-
preserving methods, such as k-anonymity [30], [31] and
`-diversity [32], are deterministic (i.e., deterministic map-
pings, such as suppression and generalization, applied to non-
stochastic datasets).

Randomized, or stochastic, privacy-preserving policies have
been shown to cause problems, such as un-truthfulness [33],
which can be undesirable in practice [34]. This is perhaps one
of the reasons behind low popularity of randomized privacy-

2Popularity of these methods is somehwat evident from the sheer number
of available toolboxes for implementation https://arx.deidentifier.org/overview/
related-software/
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preserving policies, such as differential privacy, within the
financial or health sectors [33]. For instance, randomized
privacy-preserving policies in financial auditing have been
criticized for complicating fraud detection [35], [36]. Also,
generation of unreasonable and unrealistic outputs by random-
ness can cause undesirable financial outcomes (e.g., mislead-
ing investors or market operators by reporting noisy outputs
that point to lack of liquidity in a bank). Randomized privacy-
preserving policies, in general, have also encountered difficul-
ties in medical, health, or social sciences [37], [38]. Finally,
undesirable properties of differentially-private additive noise,
especially the Laplace noise, might make it less appealing. For
instace, optimal variable estimation in the presence of privacy-
preserving Laplace noise is computationally expensive [39]
and probability of returning impossible reports (e.g., negative
median income) could be relatively high due to slow-decaying
nature of Laplace noise [40].

In addition to the aforementioned difficulties or negative
consequences associated with randomized policies, the popu-
larity of non-stochastic methods might also be caused by the
simplicity of implementing deterministic policies, in the sense
of not requiring a working knowledge of random variables and
their generation by laymen. Deterministic privacy-preserving
policies and non-stochastic measures of information leakage,
if designed correctly, can also provide concrete guarantees
regarding the amount of the information that can be inferred
about each instance of the private dataset, rather than stochas-
tic measures of privacy that only provide guarantees in average
(i.e., in a statistical sense).

So far, deterministic privacy-preserving policies are gener-
ated in an ad hoc manner and are often vulnerable to attacks
(e.g., k-anonimity has been proved to be vulnerable to attacks,
such as homogeneity attack [32]). This is because there is
no good measure of privacy that works for deterministic
policies on deterministic datasets. Therefore, one cannot prove
(in some sense) privacy guarantees of the methods (even
if weak or limited in scope or practice). The popularity of
non-stochastic privacy-preserving policies justifies requiring a
metric for their analysis and comparison (irrespective of their
inherent philosophical weaknesses in comparison to stochastic
policies).

Motivated by this observation, in this paper, a deterministic
privacy metric based on non-stochastic information theory
is developed. Traditional information theory, starting with
Shannon’s seminal work in [41], usually assumes that data
(source) and communication channels are stochastic in nature.
This has been proved to be extremely powerful in modelling
and analysing communication systems; see, e.g., [42] and
references therein. However, the notion of information within
the traditional information theory literature, such as mutual
information, is not useful for analysing non-stochastic uncer-
tain variables (an analogue of random variables but without
a probability measure) and deterministic privacy-preserving
policies. This is because such definitions require a probability
density function to exist for variables, which is not the case in
the absence of additive privacy-preserving noise (with a known
probability density function) or stochasticity assumptions on
the private dataset.

There is a parallel less-studied (within tertiary colleges)
theory of non-stochastic information theory [43]–[47], which
has been recently used within engineering [48]–[50]. Non-
stochastic information theory relies on uncertain variables and
extension of analogues of probabilistic ideas, such as indepen-
dence. Non-stochastic information theory is not equivalent to
treating input variables with known, bounded ranges as uni-
formly distributed random variables because such an approach
is still probabilistic, and the output random variables may
exhibit non-uniform distributions despite the uniform inputs.
In contrast, in the uncertain variable model, only the support
sets are considered, and no distributions are derived at any
stage. Measures of information in non-stochastic information
theory deal with counting/measuring the worst-case size of
uncertainty sets with favourable fundamental properties, such
as post-processing inequality.

In this paper, non-stochastic measures of information, such
as maximin information, from the non-stochastic information
theory literature are used to develop a measure of privacy.
Anyone can submit a query to a trusted agent with access
to a non-stochastic uncertain private dataset. An optimization
problem is posed to maximize the measure of privacy subject
to a constraint on the worst-case quality of the response (i.e.,
the worst-case difference between the response by the agent
and the output of the query computed on the private dataset).
The solution to the optimization problem captures the opti-
mal deterministic privacy-preserving policies for responding
to submitted queries. The optimal privacy-preserving policy
is in fact proved to be a quantization operator applied on
the output of the submitted query computed based on the
private dataset. The developed measure of privacy is utilized to
analyze the privacy credentials of k-anonymity, proving that
it is not privacy-preserving, which was previously observed
using adversarial attacks in [32].

The rest of the paper is organized as follows. Section II
provides a summary of non-stochastic information theory. The
problem formulation is presented in Section III. In Section IV,
a piecewise constant function, in the form of a quantization
operator, is proved to be an optimal privacy-preserving policy.
The privacy of k-anonymity is analyzed using the proposed
non-stochastic privacy metrics in Section V. Finally, Sec-
tion VI concludes the paper and presents future directions for
work.

II. NON-STOCHASTIC INFORMATION THEORY

In this section, an overview of non-stochastic information
theory is presented. First, uncertain variables, which are ana-
logues of random variables but without a probability mea-
sure, are introduced. Then, various measures of information,
i.e., non-stochastic information based on Rényi differential
0-entropy, non-stochastic information leakage, and maximin
information are presented.

A. Uncertain Variables

Consider sample space Ω. Each element ω ∈ Ω is referred
to as a sample. The sample space is the source of uncertainty.
Any mapping X : Ω → X defines an uncertain variable. A



3

realization of such a variable is X(ω). However, for the ease
of presentation, X(ω) is replaced by X when the dependence
of the uncertain variable to the sample is evident from the
context. Up to this point, the difference between uncertain
variables and random variables is the absence of a measure
on the space Ω. Throughout this paper, it is assumed that all
uncertain variables are real-valued, i.e., X ⊆ Rnx for some
nx ∈ N. Marginal range of X is defined as

JXK := {X(ω) : ω ∈ Ω} ⊆ X.

Joint range of two uncertain variables X : Ω → X and Y :
Ω→ Y is

JX,Y K := {(X(ω), Y (ω)) : ω ∈ Ω} ⊆ X× Y.

Finally, conditional range of X (conditioned on the observa-
tion of another uncertain variable Y (ω) = y) is given by

JX|yK := {X(ω) : ∃ω ∈ Ω such that Y (ω) = y} ⊆ JXK.

The family of all conditional ranges is denoted by

JX|Y K := {JX|yK : y ∈ JY K} ⊆ 2JXK.

This should not be mistaken with the union of all such condi-
tional ranges given by

⋃
y∈JY KJX|yK = JXK. In fact, regarding

the union, it can be proved that
⋃
y∈JY KJX|yK×{y} = JX,Y K.

Definition II.1 (Unrelatedness). Uncertain variables Xi, i =
1, . . . , n, are unrelated if JX1, . . . , XnK = JX1K×· · ·× JXnK.
Further, they are conditionally unrelated (conditional on Y ) if
JX1, . . . , Xn|yK = JX1|yK× · · · × JXn|yK for all y ∈ JY K.

For two uncertain variables, this definition is equivalent
to stating that X1 and X2 are unrelated if JX1|x2K =
JX1K,∀x2 ∈ JX2K, and vice versa. Again, for two uncer-
tain variables, this definition is equivalent as saying that
X1 and X2 are conditionally unrelated (conditional on Y )
if JX1|x2, yK = JX1|yK, ∀(x2, y) ∈ JX2, Y K, Finally, for
uncertain variables X and Yi, i = 1, . . . , n, it can be seen
that JX|y1, . . . , ynK ⊆

⋂n
i=1JX|yiK, where the equality is

achieved, i.e., JX|y1, . . . , ynK =
⋂n
i=1JX|yiK, if Yi, i =

1, . . . , n, are unrelated conditional on X .

B. Non-stochastic Entropy and Information

The non-stochastic entropy of uncertain variable X can be
defined as

h0(X) := log(µ(JXK)) ∈ R, (1)

where µ is the Lebesgue measure, R is the extended real line
R ∪ {±∞}, and the logarithm can be taken in any basis. In
line with the differential entropy for random variables, the
logarithm is in the natural basis throughout the rest of the
paper. The non-stochastic entropy in (1) is sometimes referred
to as Rényi differential 0-entropy [46].

Remark II.1 (ε-entropy). This notion of Rényi differential
0-entropy is intimately related to the ε-entropy [44] defined
as hε(X) := log(Nε(JXK)), where Nε(·) is the smallest
number of sets of diameter 2ε such that their union covers
JXK, referred to as the minimal ε-covering. The inequality

εnxNε(JXK) ≤ µ(JXK) ≤ (2ε)nxNε(JXK) implies that
0 ≤ h(X) − [hε(X) + nx log(ε)] ≤ nx log(2). These two
notions of entropy are similar.

Similarly, the non-stochastic relative (or conditional) en-
tropy of uncertain variable X conditioned on uncertain vari-
able Y can be defined as

h0(X|Y ) := ess sup
y∈JY K

log(µ(JX|yK)), (2)

where, for any real-valued function f : X → R for some
X ⊆ Rm, the essential supremum is defined as

ess sup
x∈X

f(x) := inf{b ∈ R : µ({x ∈ X : f(x) > b}) = 0}.

Based on the definition of entropy, the non-stochastic infor-
mation between two uncertain variables X and Y can also be
defined as

I0(X;Y ) :=h0(X)− h0(X|Y )

= ess inf
y∈JY K

log

(
µ(JXK)
µ(JX|yK)

)
. (3)

Note that Kolmogorov had defined ‘combinatorial’ conditional
entropy using log(µ(JX|yK)) and the measure of informa-
tion gain was defined as µ(JXK)/µ(JX|yK) in [44]. These
quantities are only defined for an observed value of uncertain
variable Y = y; however, the definition in (3) relies on the
worst-case ratio.

Now, a non-stochastic version of Fano’s inequality can be
established. Let the uncertain variable X̂(y) denote an estimate
of an uncertain variable X based on uncertain variable Y for
measurement Y = y. In this paper, only unbiased estimators,
defined below, are considered.

Assumption II.1 (Unbiased Estimator). An estimator X̂ :
JY K→ JXK is unbiased if X̂(y) ∈ JX|yK.

This essentially means that the estimate is consistent with
the received measurement, i.e., X, X̂(y) ∈ JX|yK. A measure
of the quality of the estimate can be defined as

dmax(X, X̂(Y )) := ess sup
y∈JY K

ess sup
x∈JX|yK

‖x− X̂(y)‖2. (4)

This measure captures the largest worst-case distance between
uncertain variable X and its estimate. Before stating the
following theorem, a notation needs to be defined. Let Γ :
z 7→

∫∞
0
xz−1 exp(−x)dx be the Gamma function (extension

of factorial to real numbers).

Theorem II.1. Consider X and Y = f(X) are uncertain
variables for some function f : JXK → JY K. Assume that
JX|yK is a Borel set for all y ∈ JY K. Then,

Γ(nx/2 + 1)1/nx

√
π

exp

(
h0(X|Y )

nx

)
≤ dmax(X, X̂(Y )).

Proof. Note that

ess sup
y∈JY K

ess sup
x∈JX|yK

‖x− X̂(y)‖2

≥ ess sup
y∈JY K

inf
X̂

ess sup
x∈JX|yK

‖x− X̂(y)‖2

≥ ess sup
y′∈JY K

1

2
diam(JX|y′K),
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where the last inequality follows from the fact that
ess supx∈JX|y′K ‖x − X̂(y′)‖2 is the radius of a ball that
encompasses JX|y′K and is centred at X̂(y′) ∈ JX|y′K (see
Assumption II.1) and the smallest such radius is always larger
than or equal to half of the diameter. Therefore,

ess sup
x∈JXK

ess sup
y:x∈JX|yK

‖x− X̂(y)‖2 ≥
1

2
ess sup
y∈JY K

Hnx(JX|yK)1/nx ,

where Hnx(·) denotes the outer Hausdorff measure, and the
last step follows from the relationship between Hausdorff
and Lebesgue measures [51, p 28-30] for Borel sets, i.e.,
Hnx(JX|yK) = 2nxΓ(nx/2 + 1)µ(JX|yK)/πnx/2. This com-
pletes the proof.

Example II.1. The notions of non-stochastic information and
relative entropy are not useful for measuring privacy leakage.
This is because it considers the size of the largest µ(JX|yK),
while privacy wants to ensure that all µ(JX|yK) are large. To
see this, consider the following example:

f(X) :=

{
X, 0 ≤ X < 1/2,

1, otherwise,

where X is an uncertain variable with JXK = [0, 1]. It is easy
to show that h0(X|f(X)) = log(1/2); note that h0(X) = 0.
Construct an estimator of the form

X̂(Y ) :=

{
Y, 0 ≤ Y < 1/2,

3/4, otherwise,

Note that dmax(X, X̂(f(X))) = 1/4 attaining the lower
bound in Theorem II.1 (as Γ(3/2) =

√
π/2), proving that X̂(·)

is optimal in the sense of minimizing dmax(X, X̂(f(X))). The
function f(·) is clearly not privacy-preserving as f(X) = X
for many inputs! In fact, infy∈JY K µ(JX|yK) = 0.

Therefore, a notion of relative disarray can be defined:

d0(X|Y ) := inf
y∈JY K

log(µ(JX|yK)). (5)

Following this, non-stochastic information leakage can be
defined as

L0(X;Y ) := h0(X)− d0(X|Y ). (6)

Another useful measure of the quality of an estimator is

dmin(X, X̂(Y )) := ess inf
y∈JY K

ess sup
x∈JX|yK

‖x− X̂(y)‖2. (7)

This measure captures the smallest worst-case distance be-
tween uncertain variable X and its estimate. If dmin(X, X̂(Y ))
is small, it means that there exist some values for uncertain
variable X for which the privacy is not preserved in the sense
that an adversary can reconstruct X for those values accurately
based on Y .

Theorem II.2. Consider X and Y = f(X) are uncertain
variables for some function f : JXK → JY K. Assume that
JX|yK is a Borel set for all y ∈ JY K. Then,

Γ(nx/2 + 1)1/nx

√
π

exp

(
d0(X|Y )

nx

)
≤ dmin(X, X̂(Y )).

Proof. The proof follows the same line of reasoning as in the
proof of Theorem II.1. Note that,

ess inf
y∈JY K

ess sup
x∈JX|yK

‖x− X̂(y)‖2

≥ ess inf
y∈JY K

ess inf
X̂

ess sup
x∈JX|yK

‖x− X̂(y)‖2

≥ ess inf
y∈JY K

1

2
diam(JX|yK).

This completes the proof.

Example II.1 (Cont’d). In this example, d0(X|f(X)) = −∞
(by the convention that log(0) = limt↘0 log(t) = −∞)
and L0(X; f(X)) = +∞. Hence, non-stochastic information
leakage L0(X; f(X)) can accurately capture the fact that
f(X) is not privacy preserving. In addition, it can be seen
that dmin(X, X̂(Y )) = 0, which proves that again X̂(Y ) is
optimal in the sense of the cost function dmin(X, X̂(Y )) (as
the lower bound in Theorem II.2 is achieved).

In general, the non-stochastic information I0(·; ·) and non-
stochastic information leakage L0(·; ·) are not symmetrical,
that is, I0(X;Y ) 6= I0(Y ;X) and L0(X;Y ) 6= L0(Y ;X)
in general (contrary to mutual information in the information
theory literature). Many measures of information have been
introduced in the past for stochastic variables that are asym-
metric and have been proved to be useful in practice [52]–
[55]. However, symmetry enables proving useful relaxations;
see Proposition III.1 in the next section. A non-stochastic
information transmission was proposed in [56], defined as

T0(X;Y ) := h0(X) + h0(Y )− h0(X,Y ). (8)

This new measure of information is symmetric, that is,
T0(X;Y ) = T0(Y ;X). Although being symmetric in general,
utilization of this measure is not possible (because JY K can
be a discrete set µ(JY K) = 0 and thus h0(X,Y ) = 0 in
all such cases). Another symmetric measure of information
is the maximin information. In order to define this measure
of information, the notion of taxicab connectivity must be
defined, borrowed from the pioneering works in [46], [48]
on non-stochastic information theory.

Definition II.2 (Taxicab Connectivity).

• (x, y), (x′, y′) ∈ JX,Y K are taxicab3 connected if there
exists a sequence of points {(xi, yi)}ni=1 ⊆ JX,Y K such
that (x1, y1) = (x, y), (xn, yn) = (x′, y′), and either
xi = xi−1 or yi = yi−1 for all i ∈ {2, . . . , n};

• A ⊆ JX,Y K is taxicab connected if all points in JX,Y K
are taxicab connected;

• A,B ⊆ JX,Y K are taxicab isolated if there do not exist
points (x, y) ∈ A and (x′, y′) ∈ B such that (x, y) and
(x′, y′) are taxicab connected;

• A taxicab partition of JX,Y K is a set of sets F(X,Y ) :=
{Ai}ni=1 such that JX,Y K ⊆

⋃n
i=1Ai, any Ai,Aj are

taxicab isolated if j 6= i, and Ai is taxicab connected for
all i.

3The term refers to taxis/cabs in New York in which they connect two
intersections by a sequence of horizontal or vertical moves.
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There exists a unique taxicab partition for any JX,Y K [46].
Maximin information can be defined as

I?(X;Y ) := log(|F(X,Y )|), (9)

where F(X,Y ) denotes the unique taxicab partition of JX|Y K.
It has been proved that |F(X,Y )| = |F(Y,X)| and thus
I?(X;Y ) = I?(Y ;X) resulting in a symmetric notion of
information [46].

Example II.1 (Cont’d). In this example, I?(X; f(X)) = +∞.
This instantly shows that f(X) is not privacy preserving.

III. PROBLEM FORMULATION

In what follows, it is assumed that a private dataset X is
available to a secure trusted agent. Anyone may submit a query
of the form f(·), i.e., it can request that the trusted agent
compute and provide the response f(X).

Definition III.1 (Measure of Privacy). Let f̃(·) be a reporting
function and define uncertain variable Y based on uncertain
variable X such that Y = f̃(X). Then, the measure of privacy
for the reporting function f̃ is

P1(f̃) :=
1

L0(X;Y )
, (10a)

P2(f̃) :=
1

I?(X;Y )
. (10b)

The inverse relationship between the measures of privacy
and information in (10) is because information leakage reduces
the privacy guarantee. A useful and intuitive property for the
aforementioned measures of privacy can be proved to illustrate
that after releasing an output it is not possible to gain more
information from the data by additional manipulations.

Theorem III.1 (Post Processing). Pi(g ◦ f) ≥ Pi(f) for both
i = 1, 2.

Proof. Let uncertain variable Y and Z be defined as Y (ω) :=
f(X(ω)) and Z(ω) := g(Y (ω)) for all ω ∈ Ω. The data pro-
cessing inequality in [46] implies that I?(X;Z) ≤ I?(X;Y ).
Therefore, P2 can be only increased by post processing. For
the other measure of privacy note that

d0(Z|X) = ess inf
z∈JZK

µ(JX|zK)

= ess inf
z∈JZK

µ

( ⋃
y′∈JY |zK

JX|y′K
)

≥ ess inf
z∈JZK

ess inf
y∈JY |zK

µ(JX|yK)

= ess inf
y∈JY K

µ(JX|yK)

≥d0(X|Y ).

Hence, P1 can also be only increased by post processing. This
concludes the proof.

The best policy for preserving privacy, maximizing the
measure of privacy, is to ensure that X and f(X) are unrelated
(making Pi(f) = 0). This is, of course, without any value as
all the information regarding X would be lost and the utility

of the report (in every possible sense) is zero. Therefore, there
is a need for balancing utility and privacy.

Definition III.2 (Measure of Quality). The measure of quality
for the reporting function f̃ for the query f is

Q(f̃) :=
1

ess sup
x∈JXK

‖f(x)− f̃(x)‖2
. (11)

With these definition ready, the optimal privacy-preserving
policy f̃ can be computed by solving the optimization problem
in

Pγ : max
f̃∈F

Pi(f̃), (12a)

s.t. Q(f̃) ≥ γ, (12b)

where F denotes the set of functions over which the privacy
measure is optimized, i.e., the set of functions of interest for
implementing as potential privacy-preserving policies.

Proposition III.1. Assume that JY K ⊆ R. For any f̃ = g ◦ f ,

I?(X; g(f(X))) ≤ I?(f(X); g(f(X))), (13a)

Q(f̃) = 1/ ess sup
y∈JY K

‖y − g(y)‖2. (13b)

Proof. Let uncertain variable Y and Z be defined as Y (ω) :=
f(X(ω)) and Z(ω) := g(Y (ω)) for all ω ∈ Ω. The
data processing inequality [46] shows that I?(X;Z) ≤
min(I?(X;Y ), I?(Z;Y )). This concludes the proof for (13a).
The proof for (13b) follows from the definition.

Proposition III.1 states that, when restricting the search
for privacy-preserving policies over the set of policies F :=
{f̃ |∃g ∈ G : f̃ = g ◦ f} for some set G, the privacy metric
can be relaxed to I?(f(X); g(f(X))). Thus, the optimization
problem in (12) with privacy measure (10b) can be relaxed to:

P′γ : min
g∈G

I?(Y ; g(Y )), (14a)

s.t. ess sup
y∈JY K

‖y − g(y)‖2 ≤ 1/γ, (14b)

In the relaxed problem, f does not directly play a role in the
privacy metric and, therefore, the optimal privacy-preserving
policy becomes independent of f . Note that such a relaxation
is not possible for the privacy measure (10a) because this
measure of information is not symmetric and thus the data
processing inequality does not hold for it in both directions.

IV. PRIVACY-PRESERVING POLICIES

Before stating the results of the paper, the set of piecewise
constant functions should be defined. Over the real line R, a
mapping g : [y, y] → [y, y] is a piecewise constant function
if there exist y = a1 ≤ a2 ≤ · · · ≤ aq+1 = y and b1 ≤
b2 ≤ · · · ≤ bq for some arbitrary number q ∈ N such that
g(y) = bi for all y ∈ [ai, ai+1) except for i = q in which case
g(y) = bq for all y ∈ [aq, aq+1]. The ordered sets (ai)

q+1
i=1

and (bi)
q
i=1 are referred to as the parameters of the piecewise

constant function. Let Q([y, y]) denote the set of all piecewise
constant functions. For more general domains X , a function
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g : X → R is a piecewise constant function if there exist sets
{Xi}qi=1 such that X ⊆

⋃q
i=1 Xi, Xi ∩ Xj = ∅ if i 6= j, and

g(x) = bi if bi ∈ Xi. The ordered sets (Xi)qi=1 and (bi)
q
i=1

are referred to as the parameters of the piecewise constant
function. Let Q(X ) denote the set of all piecewise constant
functions. When X is obvious from the context, Q is used
instead of Q(X ). The set of piecewise constant functions is
dense in Lp for all p ∈ [1,+∞) [57]. In the next theorem,
it is shown that searching over the set of piecewise constant
functions is enough for finding the solution of (12).

Theorem IV.1 (Solution Class). The solution of (12) for the
privacy metric in (10b) over the set of piecewise differentiable
functions is a piecewise constant function.

Proof. Let x ∈ JXK be any point such that ∇f̃(x) 6= 0.
Then there exists a direction d such that d>∇f̃(x) 6= 0.
Assume that d>∇f̃(x) > 0; the proof for the other case
is identical and is thus omitted. By piecewise continuity of
the derivatives, it can be deduced that there exists a small
enough neighbourhood around x of the form ‖x̃− x‖ ≤ ε‖d‖
inside which d>∇f̃(x̃) > 0. Therefore, for all w ∈ (−ε, ε),
f̃(x + wd) is increasing and takes a unique value for any
w ∈ (−ε, ε). It must be established that no two distinct
points in {(x + wd, f̃(x + wd))|w ∈ (−ε, ε)} are taxi-
cab connected. This is done by contrapositive. Assume that
this not the case. Therefore, there exists (x, y), (x′, y′) ∈
{(x + wd, f̃(x + wd))|w ∈ (−ε, ε)} ⊆ JX,Y K that are
taxicab connected. This implies that there exists a sequence
of points {(xi, yi)}ni=1 ⊆ JX,Y K such that (x, y) 6= (x′, y′),
(x1, y1) = (x, y), (xn, yn) = (x′, y′), and either xi = xi−1 or
yi = yi−1 for all i ∈ {2, . . . , n}. Because f is a function (i.e.,
yi = f̃(xi) = f̃(xi−1) = yi−1 if xi = xi−1), all transitions
such that xi = xi−1 can be eliminated (as it would also
implies that yi = yi−1). Therefore, a subsequence of points
{(x̄i, ȳi)}n̄i=1 ⊆ {(xi, yi)}ni=1 ⊆ JX,Y K can be constructed so
that (x̄1, ȳ1) = (x, y), (x̄n̄, ȳn̄) = (x′, y′), and ȳi = ȳi−1 for
all i ∈ {2, . . . , n̄}. This implies that y′ = ȳn̄ = ȳn̄−1 = · · · =
ȳ2 = ȳ1 = y. This is in contradiction with the assumption
that (x, y) 6= (x′, y′) because it must be that y 6= y′; note that
if x1 6= x2 in {(x + wd, f̃(x + wd))|w ∈ (−ε, ε)}, it must
also hold that y1 6= y2. Noting that no two distinct points in
{(x + wd, f̃(x + wd))|w ∈ (−ε, ε)} are taxicab connected,
there needs to be, at least, as many taxicab partitions as in the
number of points in {(x+wd, f̃(x+wd))|w ∈ (−ε, ε)}. This
implies that |F(X,Y )| =∞. The other category of functions
is all functions for which ∇f̃(x) = 0 (where defined) for all
x. The only functions that satisfy this condition are piecewise
constant functions. For piecewise constants |F(X,Y )| = q <
∞ with q denoting the number of disjoint sets {Xi}qi=1.

This fundamental result restricts the set of optimal privacy-
preserving policies greatly and thus reduces the complexity of
finding one.

Definition IV.1 (Uniform Quantizer). A uniform quantizer is
a scalar piecewise constant function with parameters (ai)

q+1
i=1

and (bi)
q
i=1 such that ai+1 − ai = aj+1 − aj and bj =

(aj + aj+1)/2 for all 1 ≤ i, j ≤ q. A uniform quantizer can

be equivalently represented by the range [a1, aq+1] and the
number of bins q.

As the first step, the relaxed problem in (14) is solved for
scalar cases in the next theorem.

Theorem IV.2 (Relaxed Policy). Assume that JY K = [y, y] ⊆
R. The solution of (14) over F = Q ◦ {f} is a uniform
quantizer, equi-dividing JY K into dγ(y − y)/2e bins.

Proof. Note that, for any f̃ ∈ F ,
1

Q(f̃)
= ess sup

x∈JXK
|f(x)− g(f(x))|

= ess sup
y∈JY K

|y − g(y)|

= max
1≤i≤q

max(|bi − ai|, |bi − ai+1|),

where g is any function in Q. Furthermore, I?(Y ; g(Y )) = q.
The problem (14) can be rewritten as

min
(ai)

q+1
i=1 ,(bi)

q
i=1

q,

s.t. max
1≤i≤q

max(|bi − ai|, |bi − ai+1|) ≤
1

γ
,

aq+1 = y, a1 = y.

By selecting bi = (ai + ai+1)/2, max(|bi − ai|, |bi − ai+1|)
can be made as small as possible. Thus, this problem can be
rewritten as

min
(ai)

q+1
i=1 ,(bi)

q
i=1

q, (15a)

s.t. max
1≤i≤q

1

2
|ai+1 − ai| ≤

1

γ
, (15b)

q∑
i=1

|ai+1 − ai| = y − y. (15c)

It is easy to show that q < γ(y − y)/2, the problem is not
feasible. This is because

q∑
i=1

|ai+1 − ai| ≤ q max
1≤i≤q

|ai+1 − ai|

≤ q2/γ
< y − y.

Therefore, a lower bound on the solution of (15) is then
the smallest integer that is larger than γ(y − y)/2, i.e.,
dγ(y − y)/2e. The uniform quantizer in the statement of
theorem achieves the lower bound.

Now, the general problem in (12) can be considered for
scalar queries over the set of piecewise continuous functions.

Theorem IV.3 (Optimal Policy). Assume that JY K ⊆ R.
The solution of (12) for privacy measures in (10a) over
F = Q(JXK) is given by

b∗i ∈ arg min
bi

max
x∈X∗i

|f(x)− bi|, (16a)

{X ∗i }
q∗

i=1 ∈ arg max
{Xi}qi=1:JXK⊆

⋃q
i=1 Xi

min
1≤i≤q

µ(Xi), (16b)

s.t. max
1≤i≤q

rad(f(Xi)) ≤
1

γ
. (16c)
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For privacy measures in (10b) over F = Q(JXK) is given by

b∗i ∈ arg min
bi

max
x∈X∗i

|f(x)− bi|, (17a)

{X ∗i }
q∗

i=1 ∈ arg max
{Xi}qi=1:JXK⊆

⋃q
i=1 Xi

q, (17b)

s.t. max
1≤i≤q

rad(f(Xi)) ≤
1

γ
. (17c)

Proof. Note that, for any f̃ ∈ F = Q(JXK), there exists
{Xi, bi}qi=1 such that JXK ⊆

⋃q
i=1 Xi, Xi ∩ Xj = ∅ if i 6= j,

and f̃(x) = bi if bi ∈ Xi. Hence,

1

Q(f)
= ess sup

x∈JXK
|f(x)− f̃(x)|

= max
1≤i≤q

sup
x∈Xi

|f(x)− bi|.

Let us consider the privacy measure in (10a). It can be shown
that

d0(X|f̃(X)) = ess inf
x∈JXK

log(µ(JX|f̃(x)K))

= ess inf
1≤i≤q

log(µ(JX|f̃(x) = biK))

= min
1≤i≤q

log(µ(Xi)).

The problem (12) can be rewritten as

max
{Xi,bi}qi=1

min
1≤i≤q

log(µ(Xi)),

s.t. max
1≤i≤q

sup
x∈Xi

|f(x)− bi| ≤
1

γ
,

JXK ⊆
q⋃
i=1

Xi.

This problem can be rewritten again as

max
{Xi}qi=1:JXK⊆

⋃q
i=1 Xi

min
1≤i≤q

µ(Xi),

s.t. max
1≤i≤q

min
bi

sup
x∈Xi

|f(x)− bi| ≤
1

γ
.

Noting that rad(f(Xi)) = minbi supy∈f(Xi) |y−bi| concludes
the proof for the first part. Now, let us consider the privacy
measure in (10b). It can be seen that I?(X; f̃(X)) = q.
This is because (Xi × {bi})qi=1 forms a taxicab partition for
JX, f(X)K. Hence, the problem (12) can be rewritten as

min
{Xi}qi=1:JXK⊆

⋃q
i=1 Xi

q, (18)

s.t. max
1≤i≤q

min
bi

sup
x∈Xi

|f(x)− bi| ≤
1

γ
. (19)

This concludes the proof.

For the case where JXK ⊆ R, the results of Theorems IV.3
and IV.2 are equal [58]. Therefore, there is no loss of generality
in designing the quantizer after computing f(x) rather than
designing a general f̃(x). In the next corollary, this property
is proved for general queries under mild assumptions.

Corollary IV.1. Let f be a function that f−1(y) :=
{x|f(x) = y} is a connected set for all y ∈ JY K. Then, the

X1

X2

X3

X4

Fig. 1. The regions {Xi}4i=1 for the optimal privacy-preserving policy in
Theorem IV.3 for JXK = [−2, 2]2, γ = 2, and linear query f(x) = 1>x/2.
For the optimal policy, b1 = −1.5, b2 = −0.5, b3 = 0.5, and b4 = 1.5.

X1 X3

X4

X5

X6

X7

X8

X9

X10

X11

X2

X12

Fig. 2. The regions {Xi}12i=1 for the optimal privacy-preserving policy in
Theorem IV.3 for JXK = [−2, 2]2, γ = 2, and nonlinear query f(x) =
x>diag(1, 2)x. For the optimal policy, bi = i− 0.5 for all 1 ≤ i ≤ 12.

optimal policy in Theorem IV.3 for the privacy metric (10b) is
equal to the the optimal policy in Theorem IV.2.

Proof. The solution of (12) for the privacy measure in (10b)
is given by (18). Define Y ′i = {y|∃x ∈ Xi : y = f(x)}. The
inequality constraint in (18) is equivalent to saying that that
max1≤i≤q minbi supy∈Y′i |y − bi| ≤ 1/γ. Let Yi be defined
such that Y1 = Y ′1 and Yi = Y ′i\(Y1∪· · ·∪Yi−1) for all i > 1.
Clearly, Yi ⊆ Y ′i and thus max1≤i≤q minbi supy∈Yi

|y−bi| ≤
1/γ. If Yi is connected, it should take one of the following
forms [ai, ai+1], [ai, ai+1), (ai, ai+1], or (ai, ai+1). Therefore,
by selecting bi = (ai + ai+1)/2 minimizes supy∈Yi

|y − bi|.
This implies that (18) can be rewritten as the optimization
problem in the statement of Theorem IV.2.

Example IV.1. Consider a simple example in which reporting
the average of two real numbers in [−2, 2] is of interest.
Therefore, the query is f(x) = 1>x/2. First, consider the
relaxed problem in (14). Assume that γ = 2. The optimal
policy in this case is to quantize y with a uniform quantizer
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x1 x2 x3
y1

y2

y3

y4

y5

x1 x2 x3
z1

z2

z3

z4

z5

x1 x2 x3
w1

w2

w3

w4

w5

γ

γ

γ

L
0
(X

;f̃
(X

))
d

m
in

(X
,X̂

(Y
))

I ?
(X

;f̃
(X

))

Fig. 3. The effect of parameter γ on the trade-off between utility γ
and privacy, captured using the amount of private information leaked
L0(X; f̃(X)) and I?(X; f̃(X)) as well as the adversary’s estimation error
dmin(X, X̂(Y )).

over [−2, 2] with 4 bins, denoted by g(·). Thus,

f̃(x) = g(f(x)) =


−1.5, −2 ≤ f(x) < −1,

−0.5, −1 ≤ f(x) < 0,

0.5, 0 ≤ f(x) < 1,

1.5, 1 ≤ f(x) ≤ 2.

This function can be rewritten as

f̃(x) =


−1.5, −4 ≤ x1 + x2 < −2,

−0.5, −2 ≤ x1 + x2 < 0,

0.5, 0 ≤ x1 + x2 < 2,

1.5, 2 ≤ x1 + x2 ≤ 4,

(20)

where xi denotes the i-th entry of x. Now, Theorem IV.3 can
be used to find the optimal privacy-preserving policy for the
case with privacy metric in (10b). Figure 1 illustrates the
regions {Xi}4i=1 for the optimal privacy-preserving policy in
Theorem IV.3 for JXK = [−2, 2]2, γ = 2, and linear query
f(x) = 1>x/2. For the optimal policy in Figure 1, b1 = −1.5,
b2 = −0.5, b3 = 0.5, and b4 = 1.5. It is interesting to note
that the optimal policy in Figure 1 is in fact equal to (20).
Therefore, the relaxation in (14) is without loss of generality
in this example. This is because f meets the condition of
Corollary IV.1.

The parameter γ determines the trade-off between privacy
and utility: by increasing γ, a larger bound on the quality

is required and privacy guarantee must be weakened. To
demonstrate this, consider the example discussed above with
a general γ > 0. The optimal policy in this case is to
quantize y with a uniform quantizer over [−2, 2] with d2γe
bins. Figure 3 illustrates the amount of private information
leaked L0(X; f̃(X)) and I?(X; f̃(X)), and the adversary’s
estimation error dmin(X, X̂(Y )). Evidently, as the quality
improves (γ increases), the privacy guarantee weakens (the
amount of leaked information increases and the adversary’s
estimation error decreases).

Now, focus on a non-linear query of the form f(x) = x2
1 +

2x2
2. In this case, JY K = [0, 12]. Therefore, the optimal policy

of the relaxed problem in (14) for γ = 2 is a uniform quantizer
over [0, 12] with 12 bins. Again, use g denote this quantizer.
It can be seen that

f̃(x) = i+ 0.5, i≤x2
1+2x2

2<i+ 1, ∀i ∈ {0, . . . , 11}, (21)

Again, Theorem IV.3 can be used to find the optimal privacy-
preserving policy in this case. Figure 2 illustrates the regions
{Xi}12

i=1 for the optimal privacy-preserving policy in Theo-
rem IV.3 for JXK = [−2, 2]2, γ = 2, and non-linear query
f(x) = x>diag(1, 2)x. For the optimal policy, bi = i − 0.5
for all 1 ≤ i ≤ 12. Similarly, the optimal policy in Figure 2 is
equal to (21) and thus, the relaxation in (14) is again without
loss of generality as f meets the condition of Corollary IV.1.

Example IV.2. Consider a practical example in which the
private dataset contains the height of nx individuals in the
range of [100, 250] centimetres. The submitted query is to
compute the average height of the individuals in the dataset,
i.e., f(x) = 1>x/nx. Following the results of the paper, the
optimal privacy-preserving policy is to quantize f(x) using a
uniform quantizer over [100, 250] with d75γe bins. In this case,
dmin(X, X̂(f̃(X))) = 150

√
2/d75γe, which is independent

of nx. This is because the worst-case in terms of preserving
privacy occurs in a society with nx − 2 individuals whose
heights are equal to 250 and two individuals whose heights
are within (250 − 150/d75γe, 250]. To be able to guarantee
an error of at least 10 centimetres for the adversary, γ must
be selected to be larger than 22/75 ≈ 0.2933.

V. RELATIONSHIP TO OTHER NOTIONS OF PRIVACY

In this section, the privacy credentials of k-anonymity is
analyzed using the measures of privacy in (10). Consider a
dataset x ∈ X ⊆ Rn×m with n rows (entries or individuals)
and m columns (attributes). The following argument can easily
be extended to other sets and is thus without loss of generality.

Definition V.1 (k-anonymity [30], [31], [59]). A release of
data is said to have the k-anonymity property if the infor-
mation for each individual contained in the release cannot be
distinguished from at least k−1 individuals whose information
also appear in the release.

Proposition V.1. There exists a reporting function f̃(X)
admitting k-anonymity property for which the following holds:
• d0(X|f(X)) = 0 (and thus L0(X; f(X)) = h0(X));
• I?(X; f(X)) =∞.
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Proof. Consider the case where x is a dataset that has k
identical individuals. Let the first k rows denote the identical
individuals. This is without the loss of generality as otherwise
the rows can be swapped. Let f : Rn×m → Rn×m be any
k-anonymous reporting function. Assume that the i-th row of
f(x) is report corresponding to the i-th row of x. This is again
without the loss of generality as otherwise the output rows can
be swapped. Construct f̃ such that

f̃(x) =


x1

...
xk[

0(n−k)×n In−k
]
f(x)

 .
By construction f̃ is also a k-anonymous reporting function.
However,

JX|f̃(x)K = JX|f(x)K ∩


[
w
z

]
∈ X

∣∣∣∣w =

x1

...
xk


 ,

which shows that µ(JX|f̃(x)K) = 0. Thus, d0(X|f̃(X)) = 0.
Finally, noting that JX|f̃(x)K must be included in the taxicab
partitions for all choices of x1 = · · · = xk, |F(X, f̃(X))| =
+∞. This shows that I?(X; f̃(X)) = +∞.

Proposition V.1 shows that k-anonymity is not private. This
is because of the homogeneity attack [32], i.e., attacks that
leverage the cases in which all the values for a sensitive value
within a set of k records are identical. In such cases, even
though the data has been k-anonymized, the sensitive value
for the set of k records may be exactly predicted. Such cases
are explored to prove Proposition V.1.

VI. CONCLUSIONS AND FUTURE WORK

A deterministic privacy metric using non-stochastic infor-
mation theory was presented. It was assumed that anyone
can submit a query to a trusted server with access to a non-
stochastic uncertain private data. Optimal privacy-preserving
policy was proved to be a quantized version of the output of
the submitted query. Finally, it was proved that k-anonymity
is not privacy-preserving using the proposed privacy metric.
Future work can focus on analysing non-scalar queries as well
as demonstrating the performance of the method on publicly
available datasets.
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