34 research outputs found

    Continental-scale dynamics of avian influenza in U.S. waterfowl are driven by demography, migration and temperature

    Get PDF
    Emerging diseases of wildlife origin are increasingly spilling over into humans and domestic animals. Surveillance and risk assessments for transmission between these populations are informed by a mechanistic understanding of the pathogens in wildlife reservoirs. For avian influenza viruses (AIV), much observational and experimental work in wildlife has been conducted at local scales, yet fully understanding their spread and distribution requires assessing the mechanisms acting at both local, (e.g., intrinsic epidemic dynamics), and continental scales, (e.g., long‐distance migration). Here, we combined a large, continental‐scale dataset on low pathogenic, Type A AIV in the United States with a novel network‐based application of bird banding/recovery data to investigate the migration‐based drivers of AIV and their relative importance compared to well‐characterised local drivers (e.g. demography, environmental persistence). We compared among regression models reflecting hypothesized ecological processes and evaluated their ability to predict AIV in space and time using within and out‐of‐sample validation. We found that predictors of AIV were associated with multiple mechanisms at local and continental scales. Hypotheses characterising local epidemic dynamics were strongly supported, with age, the age‐specific aggregation of migratory birds in an area and temperature being the best predictors of infection. Hypotheses defining larger, network‐based features of the migration processes, such as clustering or between‐cluster mixing explained less variation but were also supported. Therefore, our results support a role for local processes in driving the continental distribution of AIV

    Continental-scale dynamics of avian influenza in U.S. waterfowl are driven by demography, migration, and temperature

    Get PDF
    Emerging diseases of wildlife origin are increasingly spilling over into humans and domestic animals. Surveillance and risk assessments for transmission between these populations are informed by a mechanistic understanding of the pathogens in wildlife reservoirs. For avian influenza viruses (AIV), much observational and experimental work in wildlife has been conducted at local scales, yet fully understanding their spread and distribution requires assessing the mechanisms acting at both local, (e.g., intrinsic epidemic dynamics), and continental scales, (e.g., long-distance migration). Here, we combined a large, continental-scale data set on low pathogenic, Type A AIV in the United States with a novel network-based application of bird banding/recovery data to investigate the migration-based drivers of AIV and their relative importance compared to well-characterized local drivers (e.g., demography, environmental persistence). We compared among regression models reflecting hypothesized ecological processes and evaluated their ability to predict AIV in space and time using within and out-ofsample validation. We found that predictors of AIV were associated with multiple mechanisms at local and continental scales. Hypotheses characterizing local epidemic dynamics were strongly supported, with age, the age-specific aggregation of migratory birds in an area and temperature being the best predictors of infection. Hypotheses defining larger, network-based features of the migration processes, such as clustering or between-cluster mixing explained less variation but were also supported. Therefore, our results support a role for local processes in driving the continental distribution of AIV

    Paper – Art and Technology

    No full text
    This book is composed of transcribed lectures presented at an international conference on papermaking organized by the World Print Council. Includes technical and aesthetic information on industrial and handmade papers from various countries, a glossary of technical terms used in the papermaking process, and biographical notes on authors. Circa 56 bibl. ref

    The eBird enterprise : an integrated approach to development and application of citizen science

    No full text
    Citizen-science projects engage volunteers to gather or process data to address scientific questions. But citizen-science projects vary in their ability to contribute usefully for science, conservation, or public policy. eBird has evolved from a basic citizen-science project into a collective enterprise, taking a novel approach to citizen science by developing cooperative partnerships among experts in a wide range of fields: population and distributions, conservation biologists, quantitative ecologists, statisticians, computer scientists, GIS and informatics specialists, application developers, and data administrators. The goal is to increase data quantity through participant recruitment and engagement, but also to quantify and control for data quality issues such as observer variability, imperfect detection of species, and both spatial and temporal bias in data collection. Advances at the interface among ecology, statistics, and computer science allow us to create new species distribution models that provide accurate estimates across broad spatial and temporal scales with extremely detailed resolution. eBird data are openly available and used by a broad spectrum of students, teachers, scientists, NGOs, government agencies, land managers, and policy makers. Feedback from this broad data use community helps identify development priorities. As a result, eBird has become a major source of biodiversity data, increasing our knowledge of the dynamics of species distributions, and having a direct impact on the conservation of birds and their habitats
    corecore