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Abstract. Emerging diseases of wildlife origin are increasingly spilling over into humans
and domestic animals. Surveillance and risk assessments for transmission between these popu-
lations are informed by a mechanistic understanding of the pathogens in wildlife reservoirs.
For avian influenza viruses (AIV), much observational and experimental work in wildlife has
been conducted at local scales, yet fully understanding their spread and distribution requires
assessing the mechanisms acting at both local, (e.g., intrinsic epidemic dynamics), and conti-
nental scales, (e.g., long-distance migration). Here, we combined a large, continental-scale data
set on low pathogenic, Type A AIV in the United States with a novel network-based applica-
tion of bird banding/recovery data to investigate the migration-based drivers of AIV and their
relative importance compared to well-characterized local drivers (e.g., demography, environ-
mental persistence). We compared among regression models reflecting hypothesized ecological
processes and evaluated their ability to predict AIV in space and time using within and out-of-
sample validation. We found that predictors of AIV were associated with multiple mechanisms
at local and continental scales. Hypotheses characterizing local epidemic dynamics were
strongly supported, with age, the age-specific aggregation of migratory birds in an area and
temperature being the best predictors of infection. Hypotheses defining larger, network-based
features of the migration processes, such as clustering or between-cluster mixing explained less
variation but were also supported. Therefore, our results support a role for local processes in
driving the continental distribution of AIV.

Key words: avian influenza; bird migration; contact structure; influenza A virus; multi-scale analysis;
network.

INTRODUCTION

Surveillance and risk assessments for emerging dis-
eases of wildlife origin are informed by a mechanistic
understanding of their spread and distribution in wild-
life reservoirs (Cunningham et al. 2017). A fundamental
challenge in characterizing these mechanisms is quanti-
fying the relative importance of multiple processes acting

across spatial scales (Plowright et al. 2008, Tompkins
et al. 2011). Processes acting at local scales may predom-
inate and scale up to influence disease at larger scales.
For example, the seasonal aggregation of school children
or urban workers is thought to be a dominant driver of
directly transmitted, immunizing infections, such as
measles (Metcalf et al. 2009, Bharti et al. 2011). Alterna-
tively, larger-scale processes such as climate variability
or seasonal movements can also drive disease dynamics
(Wesolowski et al. 2012, Metcalf et al. 2017). Under-
standing how these processes interact and scale is essen-
tial to designing pathogen-specific surveillance and
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control strategies because it allows key processes driving
infection to be targeted.
Avian influenza viruses (AIV) are multi-host, viral

infections with a global distribution and a complex, mul-
ti-scale transmission ecology (Olsen et al. 2006). AIV in
wild waterfowl threaten the domestic poultry industry
and potentially play a role in the emergence of human
influenza. Single, low pathogenic outbreak losses in
domestic poultry are estimated minimally at $131 mil-
lion (Capua and Alexander 2004) and high pathogenic
outbreak losses are estimated at more than $1.15 billion
for response/indemnity costs and up to 3.3 billion when
accounting for the economic impacts of lost trade (U.S.
Department of Agriculture 2016). Predicting the spa-
tiotemporal distribution of AIV across the United States
is an important component of broader data- and model-
driven management frameworks for wildlife disease
(Miller and Pepin et al. 2019) and could improve our
understanding of infection ecology (Hill and Runstadler
2016). Previous studies characterizing the distribution of
AIV have relied on host traits or local-scale predictors
that capture infection patterns among birds aggregated
at one location (Ip et al. 2008, Farnsworth et al. 2012,
Bevins et al. 2014, Belkhiria et al. 2016, Papp et al.
2017). Given the broad distribution of wild bird reser-
voirs and mounting genetic evidence that long-distance
bird movements contribute to the dispersal of AIV (the-
oretical [Brown et al. 2013, Lisovski et al. 2018]; viral
dispersal [Tian et al. 2015, Hill et al. 2016, Toor et al.
2018]), fully understanding AIV spread and distribution
also requires assessment of processes acting at larger
scales through long-distance bird movements. For exam-
ple, although it is well established that AIV prevalence is
highest at fall staging areas and decreases over the sea-
son as birds migrate south, it remains unknown how
long-distance movements interact with local-scale pro-
cesses to influence this pattern.
Hypotheses regarding processes that impact the spa-

tiotemporal distribution of AIV can be categorized into
three conceptual areas that vary with respect to mecha-
nism and the spatial scale at which they operate. First, at
the scale of individuals, hosts may vary in susceptibility
or exposure due to age, sex, and breeding status. AIV
prevalence is higher in young birds (Farnsworth et al.
2012, Papp et al. 2017) and usually higher males, but not
always (Wallensten et al. 2007). Young, immunologically
naı̈ve birds shed a higher amount of virus due to both
age-specific susceptibility (Costa et al. 2010) and the
lack of humoral immunity (Jourdain et al. 2010, Danne-
miller et al. 2017) such that differences in the spatial and
temporal distribution of demographic classes may
impact the distribution of AIV. Second, at the local
scale, fecal/oral transmission among birds aggregated in
one location and transmission from environmental reser-
voirs over longer timescales (VanDalen et al. 2010) influ-
ences infection dynamics (Breban et al. 2009, Fuller
et al. 2010, Farnsworth et al. 2012, Belkhiria et al. 2016,
Papp et al. 2017). Birds shed virus in fecal material

deposited in water and both temperature and variability
in temperature impact AIV viability in water (Brown
et al. 2009, Keeler et al. 2014). Thus, waterfowl in some
habitats have higher AIV prevalence due to differences
in the accumulation and persistence of virus in the envi-
ronment (Fuller et al. 2010, Belkhiria et al. 2016). Third,
the contact and mixing patterns among wild birds at
local, intermediate, and continental scales generate a
contact network that may influence the spatial and tem-
poral distribution of AIV. For example, bird movement
into an area, the migration of birds within biological fly-
ways, and continental-scale mixing among flyways may
all mediate infection by influencing transmission among
aggregated birds and virus introduction (Hill et al. 2012,
2016, Tian et al. 2015, Sullivan et al. 2018). Few studies
have monitored waterfowl movement beyond pairwise
connections in order to relate the dynamic network gen-
erated through migration to AIV dynamics.
In this work, we integrate across scales and processes

to determine the relative importance of different hypoth-
esized mechanisms controlling the continental-scale dis-
tribution of infection. We evaluate whether the long-
distance, intermediate and continental-scale movements
of waterfowl (Hoye et al. 2011, Hill et al. 2012, Tian
et al. 2015) or smaller-scale processes (host aggregation,
viral persistence, demography) have relatively more
explanatory power. To evaluate multiple spatial scales of
waterfowl movements, we develop a novel application of
network theory to bird banding/recovery data to create a
contact network of migratory waterfowl. We combine
this network with an extensive data set on low patho-
genic, Type A AIV in migratory waterfowl for the Uni-
ted States (developed as part of the U.S. Interagency
Strategic Plan and characterized in DeLiberto et al.
[2009], Farnsworth et al. [2012], Bevins et al. [2014]).
Our approach uses covariates associated with each
hypothesis in a model selection framework to test their
relative ability to predict the probability of any AIV
infection in individual birds across space and time. We
confirm the validity of the selected model for predicting
the spatiotemporal distribution of AIV across the Uni-
ted States using standard approaches for goodness-of-
fit, cross-validation, and prediction in a subsequent year.
We then discuss the implications of our results for
surveillance and risk mitigation of AIV in the United
States.

MATERIAL AND METHODS

Data

Avian influenza surveillance data were gathered via
targeted sampling of wild, migratory birds in all 50
states. AIV surveillance data collection was coordinated
by USDA, which included sampling by USDA-Wildlife
Services employees and state and tribal partners from
2006–2011 (U.S. Interagency Working Group 2006,
DeLiberto et al. 2009, Pedersen et al. 2010, Bevins et al.
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2014). Sampling was targeted to collect samples in prior-
ity states each biological year (1 April to the following
31 March; DeLiberto et al. 2009, Bevins et al. 2014),
which approximately corresponds to the start of nesting
and brood rearing in mallards. The spatial and temporal
patterns in sampling effort are, therefore, neither ran-
dom nor regular, but the sampling design resulted in a
broad spatial and temporal coverage (DeLiberto et al.
2009). The timing of sampling in priority locations
reflects when birds, staff, and/or hunters were present in
priority areas, with 82% of samples collected in the hunt-
ing season (September–January) and 18% out of the
hunting season (February–August). Here, we use a sub-
set of the data from April 2007–2009 that detects the
presence or absence of any AIV in cloacal and oropha-
ryngeal swabs. Additional details on data collection
methods are provided in Appendix S1: standardization,
stratification, and specific diagnostic methods for the
matrix real-time reverse transcriptase-polymerase chain
reaction (rRT-PCR) assay.
Bird Banding Laboratory (BBL) data were compiled

from 2003–2009 to characterize the spatiotemporal
patterns of movement (U.S. Geological Survey Bird
Banding Laboratory 2010). We used 53,117 banding
and recovery records and restricted our analysis to
birds that were banded and recovered within the same
season (i.e., within 25 weeks of banding) to build a
contact network. BBL data included the date and
location for banding and recovery, type of recovery,
species, sex, and approximate age at banding. Age was
defined based on whether or not birds were known to
have hatched in the calendar year, called hatch-year or
after-hatch-year birds. Although we recognize the
potential for bias in the BBL data (e.g., banding loca-
tions were not chosen in a probabilistic manner, while
harvest and reporting rates vary geographically), it is
the best available information on continental-scale
movement in the western hemisphere (Munro and
Kimball 1982). Despite the inherent biases in the BBL
data, multiple metrics from the data set correlate with
known migration patterns (Buhnerkempe et al. 2016)
and were predictive of AIV prevalence in this work.

Mallards as a surrogate for waterfowl

We focus on Mallards (Anas platyrhynchos) in the
AIV surveillance and BBL data sets because they are the
most abundant, widely distributed waterfowl species, are
known to amplify and shed AIV (VanDalen et al. 2010,
Costa et al. 2011) and have the potential to interact with
domestic poultry (Pepin et al. 2014). As the bulk the
AIV surveillance data set are mallards, the 28,925 mal-
lard records result in a sufficiently large sample size for
modeling (2007-2008 data; Appendix S1: Table S1). Pre-
vious studies characterizing AIV prevalence across spe-
cies in this data set (Farnsworth et al. 2012, Bevins et al.
2014) and data sets representing a smaller spatial scale
(Fuller et al. 2010, Papp et al. 2017) support this focus:

prevalence for dark geese is considerably lower than for
the dabblers whereas the prevalence in dabblers closely
tracks the overall prevalence across all species
(Appendix S1: Table S1, Fig. S1). Appendix S1: Fig. S1
illustrates the marginal distributions for AIV prevalence
observed in all species, dabbling ducks and dark geese,
respectively.

Network construction

We generated a contact network describing mallard
migration (Buhnerkempe et al. 2016) using BBL data
and analysed it at multiple scales using metrics derived
from network theory (Newman 2010). Specifically, we
defined the network by specifying nodes as spatial loca-
tions on a 200 × 200 km lattice grid. Edges in the net-
work were defined as the number of mallards moving
between two nodes at a four-week (monthly) time reso-
lution averaged across 5 yr. For example, the edge
weights assigned for the first four-weeks in 2007 were
calculated by (1) compiling recovery records for those
weeks in 2003, 2004, 2005, 2006, and 2007; (2) quanti-
fying the number of records describing movement along
edges in each year; and (3) assigning edge weights as
the average number across years. We use this edge defi-
nition to align the BBL and AIV surveillance data sets
because recovery distributions did not differ signifi-
cantly across years (Mielke and Berry 2007) and averag-
ing across years minimizes noise due to unobservable
bird movements or variation in hunting effort (Roy
et al. 2015). Extended network methods and a justifica-
tion of these spatial and temporal decisions are pro-
vided in Appendix S2.

Data analysis: translating hypotheses into model
covariates

We characterized multiple hypothesized processes
driving the spatial and temporal distribution of AIV and
developed sets of covariates representing each hypothesis
and combinations of hypotheses (Fig 1; Appendix S3).

1) The demography hypothesis: In North America,
young birds hatch in the summer on northern breed-
ing grounds. They are exposed and develop immunity
to infection on the breeding grounds and in the fall
as they migrate to southern over-wintering areas (Hill
et al. 2012). The demography hypothesis represents
the idea that because young, male birds are more
likely to be infected (Costa et al. 2011, Farnsworth
et al. 2012, Papp et al. 2017), differences in the spatial
and temporal distribution of demographic classes
impact the distribution of AIV (Fig. 1). Potential
predictors representing this individual-scale hypothe-
sis are age and sex (Table 1).

2) The environmental reservoir hypothesis: At the local
scale, the environmental reservoir hypothesis repre-
sents the prediction that differences in the amount
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of virus in the environment are influenced by the
environmental conditions driving viral persistence;
the seasonal aggregation of young, immunologically
naı̈ve birds via migration that become infected and
shed the virus; and the proportion of older, immune
birds (Fig. 1). We represent the age-specific, sea-
sonal aggregation of migratory birds with flow as a
predictor. We calculated banding and recovery flow
as the age-specific (hatch-year, after-hatch-year)
weighted in-degree and out-degree, standardized by
the maximum across all nodes and time periods.
Weighted in- and out-degree measure the age-speci-
fic number of banded and recovered birds at a

particular node during that month. Because envi-
ronmental persistence is regulated by the abiotic
characteristics of the water, we used a temperature
polynomial as a predictor for this hypothesis. We
use a larger time scale for the bird movement data
than the temperature data because the monthly
time resolution averages over mismatches from
approximating movement with the BBL data set
(see detailed network methods in Appendix S2).
The temperature polynomial includes the weekly
average minimum temperature and the change in
weekly average minimum temperature from the pre-
vious week (Table 1).

FIG. 1. Conceptual diagram of the five hypothesized mechanisms controlling the spatial-temporal distribution of avian influ-
enza viruses (AIV). (1) Demography hypothesis: young, immunologically naı̈ve male birds exhibit elevated AIV prevalence. (2) Envi-
ronmental reservoir hypothesis: local aggregation of hosts across the migratory cycle (flow) and water temperature (temp)
determine the size of the environmental AIV reservoir and AIV prevalence. (3) Hot-spots hypothesis: some areas (pink circles) natu-
rally maintain higher AIV prevalence. (4) Contact network hypothesis: Flow, clusters connected by similar migration patterns (col-
ored areas), mixing occurring among clusters (bridging), and continental-scale migration all impact AIV prevalence (C2). (5)
Multiple-mechanisms hypotheses. Boldface text and yellow circles align with the five hypotheses in Table 1. Light-yellow circles
indicate sub-components of the contact network hypotheses.
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3) The hot-spots hypothesis: Previous studies have indi-
cated that spatial and temporal “hot spots” of AIV
occur: AIV prevalence is higher at northern latitudes
and during the late summer months (Bevins et al.
2014). Thus, certain spatial or temporal locations
could have inherently higher probability of AIV
infection, e.g., a flu season. To investigate this, the
hot-spots hypothesis is a phenomenological represen-
tation of local processes (Fig. 1), with latitude, longi-
tude, and a polynomial week term as predictors. A
polynomial temperature term was also considered as
predictors since temperature can also generate a hot-
spots-like pattern (Reperant et al. 2010). (Table 1).

4) The contact network hypotheses: We assess the rela-
tive contribution of mechanisms at multiple biologi-
cally relevant scales based on networks defined by
mallard movement. We considered local (flow hypoth-
esis), intermediate (clusters hypothesis, bridging
hypothesis) and continental scales (continental-scale
mixing hypotheses) in the contact network as well as
their combined effect with the contact network
hypothesis (Fig. 1; Table 1).

At the smallest, relatively local scale, the flow hypothesis
predicts that the age-specific aggregation of migratory
birds in a node influences the distribution of AIV, with
flow as a predictor. The influx of immunologically naı̈ve
migratory birds, plays a dominant role in infection dynam-
ics within a site (Brown et al. 2013, Lisovski et al. 2018).
At the intermediate scale, the clusters hypothesis pre-

dicts that the migration of birds within biological

flyways influences the distribution of AIV. We character-
ize data-driven flyways based on groups of highly con-
nected nodes using an algorithm that clusters nodes
using connectivity data, a community detection algo-
rithm. We considered clusters as static based on all avail-
able data from 2003 to 2008, and we use cluster identity
as a predictor representing this hypothesis. A detailed
description of the algorithm is provided in Appendix S2.
We applied this algorithm because it is appropriate for
weighted, directed networks (e.g., it accounts for the
direction and strength of the connections) and does not
require that the number of clusters be predetermined.
Previous analyses of bird movements based on the BBL
data using other community detection algorithms pro-
duced qualitatively similar flyway identifications (Buhn-
erkempe et al. 2016).
The bridging hypothesis, also at the intermediate scale,

predicts that areas where mixing between flyways occurs
will mediate infection patterns. The bridging hypothesis
is represented with a bridging index that quantifies if a
node has connections to multiple clusters, signaling
mixing. We defined and calculated a bridging index for
each node as the proportion of birds moving through a
node that remained within the cluster. Specifically, we
calculated the ratio of the bandings/recoveries at a node
that moved to/from a node in a different cluster to the
total number of bandings/recoveries associated with the
node. A value close to one indicates a large amount of
mixing with other clusters; a value close to zero implies
that the node mixes largely within its own cluster. This
statistic is conceptually related to measures of bridging
between individuals developed in the social sciences
(Valente and Fujimoto 2010). Year-to-year variation
was estimated by computing the bridging index using
only the most recent five years of banding and recovery
data (e.g., 2003–2007 data were used to compute bridg-
ing for 2007).
To represent the influence of continental scale net-

work structure (continental-scale mixing hypothesis), we
used the minimum spanning trees (MST) index. An
MST is roughly defined as the smallest set of edges in
the network that together connect all the nodes of the
network. Hence, the MST provides the shortest path
through the network that still maintains 100% connec-
tivity. It is possible to have multiple minimum spanning
trees or uncertainty in the minimum spanning tree as in
our case where the network is sampled and not fully
known. The MST index was calculated for each node;
it conceptually represents how important that node is
in maintaining a fully connected network. We calcu-
lated it with a multi-step procedure. First, we built a
master table of banding to recovery locations such that
the connections between nodes were collapsed across
time. The resulting table is n × n and sparse, and we set
the main diagonal to zero to account for self-connec-
tions. Second, we used an algorithm to identify subsets
of the network that preserve 100% connectivity. The
algorithm proceeds by randomly selecting a banding

TABLE 1. Potential predictors considered for each hypothesis.

Hypothesis Predictors

(1) Demography age, sex
(2) Environmental
reservoir

flow × temp polynomial

(3) Hot spots latitude × longitude × week polynomial,
latitude × longitude × temp polynomial

(4) Contact
network

flow, cluster identification, bridging index,
minimum spanning trees index (MST)

(5) Multiple
mechanisms

age, sex, flow × temp polynomial,
latitude × longitude × temp polynomial,
cluster identification, bridging index,
MST

Notes: Appropriate main effects and lower-level interactions
were included where needed (e.g., a model with Latitude × Lon-
gitude × Week polynomial would also include Latitude × Week
polynomial, Longitude × Week polynomial). Week polynomial
refers to three parameters: week + week2 + week3. Temp poly-
nomial refers to six parameters: T0 + T2

0 + T3
0 + ΔT + ΔT2 +

ΔT3, where T0 represents the weekly average minimum tempera-
ture and represents the change in weekly average minimum tem-
perature from the previous week. Flow is represented by four
parameters describing the banding flow for hatch year birds,
banding flow for after-hatch-year birds, recovery flow for
hatch-year birds, and recovery flow for after-hatch-year birds.
Hypothesis numbers refer to their display in Fig. 1 and presen-
tation order in Methods.
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node and checking to see if 100% connectivity is main-
tained if that node were omitted from the network. This
procedure repeats until no nodes remain that can be
removed without maintaining 100% connectivity. The
set of remaining nodes makes up one subset of the net-
work whose edges form an MST. Because the overall
structure of the network is unknown (i.e., we only
observed a sample of the connections between nodes
across time), we repeated the algorithm to identify 100
subsets. Third, we calculated the MST index for each
node as the proportion of subsets that included that
node. Year-to-year variation was computed using the
most recent five years of banding and recovery data
similar to the bridging index.

Data analysis and model selection

We used logistic regression to model the probability
that an individual bird is AIV positive or negative.
Assumptions of logistic regression were tested and met
(e.g., significant spatial or temporal correlation in
model residuals was not observed based on spatial plots
of the residuals and autocorrelation functions). Model
selection proceeded by identifying a candidate set of
models that included covariates appropriate to test each
hypothesis under consideration (Table 1). Due to the
large number of potential models, we conducted model
selection in two stages. First, we selected a parsimo-
nious model representing each hypothesis using model
selection. In all models, we estimated model parameters
and their corresponding standard errors using likeli-
hood-based methods and compared among models
using small-sample size corrected Akaike’s information
criterion (AICc). We selected the model with the lowest
AICc within each hypothesis (Appendix S3: Table S1).
Second, the covariates from the selected model for each
individual hypothesis were combined to generate a full
set of multiple-mechanisms models to test if multiple
types of processes impact the distribution of AIV. We
selected the multiple-mechanisms model with the lowest
AICc and used the change in AICc values, ΔAICc, to
compare the relative contribution of processes, repre-
sented by multiple covariates (e.g., environmental reser-
voir) to the selected model for each individual
hypothesis.
We evaluated the model with the overall lowest AICc

value using both in-sample and out-of-sample valida-
tion. For in-sample validation, we assessed goodness of
fit by estimating the Receiver Operating Characteristic
curve and the area under the curve (AUC; AUC values
over 0.5 indicate that the model is able to predict AIV+
vs. AIV− and AUC values over 0.7 indicate good predic-
tion). We also performed cross-validation to evaluate the
stability of the estimated model parameters and to evalu-
ate the overall predictive capability (Arlot and Celisse
2010). For out-of-sample validation, we applied the best
model with parameter estimates from the 2007 to 2008
data to response and covariate data collected for the

2009 biological year. We tested out-of-sample prediction
using AUC to quantify the model’s ability to predict
AIV+ vs. AIV− for the 2009 biological year. All analy-
ses were conducted in R (R Core Team 2012); network
statistics were calculated with custom scripts.

RESULTS

Bird movement networks

Flow captured changes in the number of birds at each
node through time. Fig. 2a shows flow from banding
records aggregated to an annual scale. Most banding
happens early in the season while birds are still on the
northern breeding grounds and west coast in significant
numbers. Video S1 illustrates how flow from banding
records develops over the year and captures the early
season aggregation of migratory of birds (Appendix S3).
Fig. 2b shows flow from recovery records aggregated to
an annual scale. At the annual scale, we see that aggrega-
tion is highest on the West Coast and in the Mississippi
River and Great Lakes regions. Video S2 illustrates how
flow from recovery records develops over the year as
birds migrate south and captures later season aggrega-
tion of birds. Aggregation appears to occur earlier in the
Mississippi River and Great Lakes regions, yet it is
maintained for a longer period of time once it occurs on
the West Coast. It moves from north to south along the
Mississippi River region.
Fig. 2c shows clusters in the contact network; birds

located in one cluster are more likely to migrate to
another location within that cluster. Cluster 1 (dark
blue) is located in California; cluster 2 (light blue) is in
the west and split to either side of the Rocky Mountains;
cluster 3 (green) is in the Mississippi valley; cluster 4
(yellow) is in the Ohio valley; and cluster 5 (black)
extends along the East Coast. The bridging index tends
to be highest on the boundary of clusters, suggesting
that cluster boundaries are porous and mixing among
clusters occurs primarily at their boundaries. Clusters 1
and 4 have high levels of bridging throughout the cluster.
Cluster 1 in California mixes strongly with the western
portion of cluster 2. Cluster 4 appears to be a transition
zone between the Mississippi valley (cluster 3) and the
East Coast (cluster 5). The cluster locations and distri-
bution of the bridging index are fairly consistent with
ecological studies on flyways (Buhnerkempe et al. 2016).
Fig. 2d shows locations that play an important role in

continental-scale connectivity due to their inclusion in
the MST. Many key locations occur at northern latitudes
that control connections to the contiguous United
States. Additional important locations occur in Florida
and Colorado. Much of the Midwest, Southwest and
Southeast are not part of the MST, suggesting that these
areas have many connections or routes by which they
can be reached through the network and are not key
areas in controlling overall connectivity across North
America.
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AIV prevalence and model inference

The highest AIV prevalence occurred in northern lati-
tudes, particularly in the Pacific Northwest, Great
Lakes, and Northeast (Fig. 3a, b) and in the mid- to
late-summer months (Fig. 3c). While it is easier to
describe and visualize the AIV distribution at the conti-
nental scale with prevalence, our model predicts the dis-
aggregated information underlying prevalence: the AIV
infection status of individual birds. A combination of
hypotheses represented in the multiple-mechanisms
model was best supported by the data set (Table 2). The
selected, best-fit multiple-mechanisms model resulted in
a much lower AICc value compared to each individual
hypothesis model (Table 2; Appendix S3: Table S1). The
multiple-mechanisms model also resulted in a good fit to
the overall spatiotemporal distribution of AIV in 2007
and 2008 as determined by individual bird AIV infection
status (AUC = 0.76), although prevalence at some speci-
fic locations and times visually appear over or under pre-
dicted (Fig. 3d–f). The multiple-mechanisms model had
substantial predictive ability under cross-validation, as
suggested by similar values for error sum of squares and
pure error sum of squares (within 0.9%; Appendix S3:
Fig. S1). It also performed well during out-of-sample
validation (AUC = 0.69) based on predicted individual

infection status using 2007–2008 parameter estimates
and 2009 covariate data as compared to the observed
infection status of 7,108 mallards sampled in the 2009
biological year. Again, prevalence at some locations and
times visually appear over or under predicted
(Appendix S3: Fig. S2).
To better understand the relative role of different pro-

cesses and spatial scales, we interpreted the relative con-
tribution made by groups of parameters associated with
specific hypotheses to the multiple-mechanisms model
(Fig. 4), as well as parameter estimates that relate indi-
vidual predictors to the probability of AIV in individual
birds (Appendix S3: Table S2).
An important role for the environmental reservoir was

supported by the highest sum ΔAICc values for the asso-
ciated covariates: flow, temperature, and their interac-
tion (Table 2; Fig. 4). Significant parameter estimates
and the relatively high ΔAIC value for the flow by tem-
perature interaction terms supported an important role
of environmental reservoir transmission as differentiated
from direct, fecal/oral transmission mechanisms alone
(e.g., potentially associated with flow covariates) or tem-
perature only effects (e.g., associated with the tempera-
ture polynomial; Fig. 4). The role of demography was
also supported as the age covariate had the next highest
ΔAICc value. Consistently, the probability of positive

FIG. 2. Contact network of bird movements. The circle area is proportional to (a) early-season banding flow aggregated tempo-
rally, (b) late-season recovery flow aggregated temporally, (c) the bridging index, and (d) continental-scale mixing based on the min-
imum spanning tree index. Colors in panel c indicate clusters in the network.
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AIV status decreased with age (after hatch year com-
pared to hatch year; β = 0.057, P < 0.001). Finally, the
bridging and cluster covariates are included in the best-
fit model, providing some support for a potential role of
higher order network-based features of the migration
process. Despite clear latitudinal and temporal patterns
in the distribution of AIV, there was no direct evidence
for a main latitudinal or temporal effect after accounting
for demographic, environmental, and bird-movement
based predictors. Parameter values for latitude and lon-
gitude, as well as their interaction, were small and non-
significant (latitude, β = −0.04, P = 0.740; longitude,

β = 0.10, P = 0.059; interaction, β = −0.001, P = 0.163;
Appendix S3: Table S2), and the week polynomial was
not selected for inclusion in the final model. However,
there were some higher order interaction terms of lati-
tude and longitude with temperature in the model; we
speculate on some alternative roles for these terms in the
discussion.

DISCUSSION

For wildlife disease systems, multiple ecological mech-
anisms often contribute to the distribution of infection
and risk of spill-over infection in domestic animals (e.g.,

FIG. 3. AIV prevalence. Observed AIV prevalence in Mallards at spatial locations across the continental United States aggre-
gated in the (a) 2007 biological year and (b) 2008 biological year. Sample size is represented by circle area. (c) Observed AIV preva-
lence in Mallards through time, aggregated across the continental United States for 2007 (red) and 2008 (blue). The symbols show
the observed mean prevalence and lines indicate 95% confidence intervals (Appendix S2). (d–f) Comparison between observed data
(light gray) and model predictions (black) across time at three distinct nodes. Node locations correspond to letters in (a), chosen to
display a range of spatial locations and prevalence values.
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bTB [Palmer et al. 2012], Nipah virus [Pulliam et al.
2011], and rabies [Blackwood et al. 2013]). In this study,
we illustrate how synthesizing data across multiple scales
of ecological organization into a hypothesis-testing
framework can identify the relative contribution of these
processes. Using AIV infection in migratory waterfowl,
we show that continental-scale infection patterns may be
influenced by processes acting at multiple scales.
Our findings provide novel insights into the drivers of

AIV infection in wild waterfowl. The greater contribu-
tion of individual and relatively local spatial-scale pro-
cesses in our analysis (Fig. 4) suggests that processes
acting at these levels predominate and scale up to influ-
ence the distribution of AIV at the continental scale.
Specifically, our results support hypotheses representing
local, environmental reservoirs and demography (age) as
driving the probability of infection and ultimately preva-
lence. Here, age and age-specific aggregations of migra-
tory birds approximate immune status and population

immunity, respectively. Previous work has experimen-
tally characterized the age-specific (Costa et al. 2010)
and environmental drivers of infection (Brown et al.
2009, Keeler et al. 2014). Studies integrating detailed
data collection and theoretical models based on one
location have demonstrated the importance of environ-
mental reservoirs, the role of population immunity and
the influx of young, immunologically naı̈ve individuals
through births and migration (Breban et al. 2009, Brown
et al. 2013). For example, detailed sampling and model-
ing at one site in Oud Alblas, Netherlands, suggest that
the influx and replacement of young, immunologically
naı̈ve migratory birds are required to predict the local
dynamics of infection at one location (Lisovski et al.
2018). The overall support for the environmental reser-
voir hypothesis (Fig. 4), capturing interactions between
temperature and local, age-specific aggregations of birds
across the migratory cycle, indicates a broader role of
this mechanism at the continental scale.

TABLE 2. Model selection and relative contribution of predictors in the selected model.

Model Contact network hypothesis Environmental reservoir hypothesis p p* AICc AUC ΔAICc

Multiple mechanisms 64 18,559 0.76
Hot spots 28 19,371 0.74
Environmental reservoir 35 19,290 0.70
Contact network 13 19,874 0.70
Demography 3 21,114 0.63
Subsets of multiple-mechanisms model
Age 1 18,722 163
Bridging and cluster x 7 18,585 26
Flow x x 4 18,563 4
Temp polynomial x 6 18,607 48
Flow × temp polynomial x 24 18,693 134

Notes: The model selection table includes the numbers of parameters (p), corrected Akaike information criterion (AICc) and
area under the Receiver Operating Characteristic curve (AUC). Lower AICc values indicate greater support, AUC values over 0.5
indicate that the model is able to discern avian influenza virus (AIV)+ vs. AIV−; values over 0.7 indicates good discernment; values
of 1 indicate that the model is always correct. Comparing subsets of the multiple-mechanisms model, the number of parameters (p*)
are those associated with biologically interpretable groups of predictors and the ΔAICc measures the relative contribution associ-
ated with including those terms in the multiple-mechanisms model.

FIG. 4. Relative contribution of predictors in the final, multiple-mechanisms model based on the change in the Akaike informa-
tion criterion corrected for sample size (ΔAICc). Larger ΔAICc values indicate that those predictors have a larger contribution to
the multiple-mechanisms model. Parameters are combined into biologically interpretable groups of predictors and colored based on
the hypothesis they represent (Table 1). For example, flow is represented by four parameters describing the banding flow for hatch
year birds, banding flow for after-hatch-year birds, recovery flow for hatch year birds and recovery flow for after-hatch-year birds.
Flow is a predictor in both the contact network and environmental reservoir hypotheses.
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Our work also quantifies the movement of birds in a
network context and provides a data-driven assessment
of multiple scales of the migration process. Most work
on the role of bird movements in the spread of AIV has
focused on the inferred movement of birds between two
to a few locations (Hoye et al. 2011, Hill et al. 2012, Hill
et al. 2012, Hill et al. 2016) or the role of migratory fly-
ways (Fourment et al. 2017; but not always, Tian et al.
2015, Sullivan et al. 2018). Migratory flyways represent
common migratory paths and are presumed to represent
populations that can be discretely managed (Lincoln
1935). They have been shown to influence viral move-
ment by restricting transmission between flyways (Four-
ment et al. 2017). Our work suggests that flyways,
represented here by data-driven clusters, had less influ-
ence on AIV prevalence compared to temperature and
migratory bird movement quantified as aggregation at
the local scale (Table 1; relative support for flow vs. clus-
ters hypothesis). This result underscores the difference
between strain-specific viral movement and prevalence.
Different processes likely influence viral movement vs.
prevalence because the latter is dependent on both the
virus being moved into the area and the following local
dynamics (Lisovski et al. 2018). Additionally, most stud-
ies of viral movement are based on canonical north-
south flyways (Fourment et al. 2017) that may miss spe-
cies-specific differences, seasonal differences, or local
movements that are revealed using banding data (La
Sorte et al. 2014, Buhnerkempe et al. 2016). For exam-
ple, the high levels of bridging in the California and
Ohio valley clusters as well as at the boundaries of fly-
ways suggest that these clusters and their boundaries
may not be as static as the others. Understanding how
locations with high levels of connectivity or bridging
influence transmission will be an important area of
future research. Such a research agenda will be able to
leverage a well-developed theory of disease transmission
on contact networks (Keeling 2005).
Furthermore, our work suggests that these mecha-

nisms explain more variation in AIV prevalence com-
pared to a more phenomenological representation of
spatial and temporal hot spots represented in the hot-
spots model (AICc values in Table 1). The hot-spots
model resulted in good prediction based on AUC values,
consistent with previous work establishing its predictors
(latitude, longitude, week) as correlates of AIV preva-
lence (Ip et al. 2008, Farnsworth et al. 2012, Brown et al.
2013, Bevins et al. 2014). However, these terms had a
low contribution to the final model and were non-signifi-
cant after accounting for local, age-specific bird move-
ments and temperature. Some complexity still remains in
the multiple-mechanisms model from higher order lati-
tude, longitude and temperature interactions
(Appendix S3: Table S2). These terms may correct mis-
matches between the data sets resulting from approxi-
mating migration from the BBL data, which is
influenced by variable harvest and reporting rates
(Munro and Kimball 1982). They may also represent

unobserved host or virus-specific predictors of AIV.
Specifically, by focusing on local, intermediate and con-
tinental-scale mechanisms, our work does not consider
variation within or between subtypes (Latorre-Margalef
et al. 2014), co-infections (Wille et al. 2015), or hetero-
geneity among habitats within a location (Sullivan et al.
2018).
Surveillance and risk mitigation for spillover between

wild birds and domestic poultry is complex and worthy
of data and modeling frameworks that consider how
these smaller-scale mechanisms combine with the local,
intermediate, and continental-scale movement of birds
(Pepin et al. 2014, Ramsey et al. 2014). Therefore, a cur-
rent challenge for surveillance systems in North Ameri-
can wild birds is to balance multiple objectives;
surveillance goals include (1) maximizing early detection
of novel strains of introduced, highly pathogenic AIV,
(2) identifying regions that would receive the largest ben-
efits from the establishment of risk mitigations, and (3)
understanding the dynamics of commonly circulating
low pathogenic AIV, including the spatial-temporal dri-
vers of prevalence, subtype diversity, and reassortment
(Bevins et al. 2014, 2016). Our results suggest that the
Pacific Northwest and Great Lakes regions have a high
AIV prevalence in wild waterfowl. This area also has fre-
quent backyard poultry operations or live bird markets;
it also has high densities of small, higher-risk commer-
cial poultry operations (Appendix S1: Fig. S1). Given
the potential introduction of commonly circulating AIVs
and subsequent emergence of high path phenotypes in
domestic poultry (Xu et al. 2017, Li et al. 2018), this
work highlights the importance of continued monitor-
ing. Additionally, the importance of processes acting at
local scales identified here suggests that some aspects of
surveillance and risk assessment for endemic AIV could
be focused at these scales. Emphasis could be placed on
assessing the local density of hatch-year and after-hatch-
year birds and on water temperatures as opposed to
more logistically complex tracking of bird migration pat-
terns or even regional movements from areas of higher
AIV prevalence. Coordination of resource distribution
and data analysis for AIV continues to be needed at a
national scale, particularly because changes in smaller-
scale processes due to climate change and other factors
will be difficult to track otherwise.
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DATA AVAILABILITY

Bird banding, recovery, and metadata are available from the USGS Bird Banding Laboratory (https://www.usgs.gov/centers/
pwrc/science/bird-banding-laboratory). To obtain the data, follow the “Data and Tools” link, then the “Request data from the
BBL” link. This data set included mallard recovery records from 2003–2009. The avian influenza surveillance data are stored, main-
tained, and available upon request from the National Wildlife Disease program at USDA’s National Wildlife Research Center (see
up-to-date contact details here: https://www.aphis.usda.gov/aphis/ourfocus/wildlifedamage/programs/nwrc/nwdp). This data set
included samples from mallards from 2007 to 2009.
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