157 research outputs found

    Mixed-sandwich complexes of low-valent uranium for the reductive activation of small molecules

    Get PDF
    Recent work in our laboratory has shown that cyclopentadienyl mixed-sandwich complexes of uranium(III) display novel reactivity towards small molecules; a particular result is the reductive coupling of CO, which depending on steric constraints can react selectively to form several members of the oxocarbon series. This reaction takes a poisonous and readily available C1 source and transforms it into a biologically useful compound. This thesis is in three parts. The first seeks to expand on the reactivity already observed by extending it to other small molecules and although well-defined coupling reactions were not achieved, several novel complexes were isolated. The chemical removal of the coupled CO product was also investigated. The second and third parts are linked as they examine the effects on stability and reactivity of the uranium(III) complex, of substituting two very different monoanionic ligand classes in the place of the cyclopentadienyl ligand. Two novel complexes were synthesised using the trispyrazolylborate and the cyclooctatetraenyl or pentalenyl ligands. The complexes display very different reactivity to each other and to the cyclopentadienyl ligands. Density functional calculations support the experimental findings. The final class of ligand, the indenyl ligand is much closer in type to the original system. The two novel indenyl complexes synthesised display reactivity towards CO and CO2, including the isolation of a reductively coupled CO complex. This demonstrates that the novel reactivity exhibited by the cyclopentadienyl mixed-sandwich complexes of uranium(III) can be replicated using a different ligand system. However, the reactivity observed is not only comparable, but also complementary. The structural and reactivity data presented in this thesis are instructive to our understanding of low-valent uranium chemistry and provide an insight into how the use of different ligand classes can effect the overall reactivity of the low-valent system

    The semiquinone radical anion of 1,10-phenanthroline-5,6-dione: synthesis and rare earth coordination chemistry

    Get PDF
    Reduction of 1,10-phenanthroline-5,6-dione (pd) with CoCpR2 resulted in the first molecular compounds of the pd˙− semi-quinone radical anion, [CoCpR2]+[pd]˙− (R = H, (1); R = Me4, (2)). Furthermore compounds 1 and 2 were reacted with [Y(hfac)3(thf)2] (hfac = 1,1,1-5,5,5-hexafluoroacetylacetonate) to synthesise the rare earth-transition metal heterometallic compounds, [CoCpR2]+[Y(hfac)3(N,N′-pd)]˙− (R = H, (3); R = Me4, (4))

    The modular synthesis of rare earth-transition metal heterobimetallic complexes utilizing a redox-active ligand

    Get PDF
    We report a robust and modular synthetic route to heterometallic rare earth-transition metal complexes. We have used the redox-active bridging ligand 1,10-phenathroline-5,6-dione (pd), which has selective N,N′ or O,O′ binding sites as the template for this synthetic route. The coordination complexes [Ln(hfac)3(N,N’-pd)] (Ln = Y [1], Gd [2]; hfac = hexafluoroacetylacetonate) were synthesised in high yield. These complexes have been fully characterised using a range of spectroscopic techniques. Solid state molecular structures of 1 and 2 have been determined by X-ray crystallography and display different pd binding modes in coordinating and non-coordinating solvents. Complexes 1 and 2 are unusually highly coloured in coordinating solvents, for example the vis-NIR spectrum of 1 in acetonitrile displays an electronic transition centred at 587 nm with an extinction coefficient consistent with significant charge transfer. The reaction between 1 and 2 and VCp2 or VCpt2 (Cpt = tetramethylcyclopentadienyl) resulted in the isolation of the heterobimetallic complexes, [Ln(hfac)3(N,N′-O,O′-pd)VCp2] (Ln = Y [3], Gd [4]) or [Ln(hfac)3(N,N′-O,O′-pd)VCpt2] (Ln = Y [5], Gd [6]). The solid state molecular structures of 3, 5 and 6 have been determined by X-ray crystallography. The spectroscopic data on 3–6 are consistent with oxidation of V(II) to V(IV) and reduction of pd to pd2− in the heterobimetallic complexes. The spin-Hamiltonian parameters from low temperature X-band EPR spectroscopy of 3 and 5 describe a 2A1 ground state, with a V(IV) centre. DFT calculations on 3 are in good agreement with experimental data and confirm the SOMO as the dx2−y2 orbital localised on vanadium

    Breaking free from the crystal lattice:Structural biology in solution to study protein degraders

    Get PDF
    Structural biology offers a versatile arsenal of techniques and methods to investigate the structure and conformational dynamics of proteins and their assemblies. The growing field of targeted protein degradation centres on the premise of developing small molecules, termed degraders, to induce proximity between an E3 ligase and a protein of interest to be signalled for degradation. This new drug modality brings with it new opportunities and challenges to structural biologists. Here we discuss how several structural biology techniques, including nuclear magnetic resonance, cryo-electron microscopy, structural mass spectrometry and small angle scattering, have been explored to complement X-ray crystallography in studying degraders and their ternary complexes. Together the studies covered in this review make a case for the invaluable perspectives that integrative structural biology techniques in solution can bring to understanding ternary complexes and designing degraders

    Molecular and electronic structure of the dithiooxalato radical ligand stabilised by rare earth coordination

    Get PDF
    Heterometallic rare earth transition metal compounds of dithioxalate (dto)2–, [NiII{(dto)LnIIITp2}2] (Ln = Y (1), Gd (2); Tp = hydrotris(pyrazol-1-yl)borate) were synthesised. The Lewis acidic rare earth ions are bound to the dioxolene and chemical reduction of 1 and 2 with cobaltocene yielded [CoCp2]+[NiII{(dto)LnIIITp2}2]˙− Ln = Y (3), Gd (4). The reduction is ligand-based and 3 and 4 are the first examples of both molecular and electronic structural characterisation of the dithiooxalato radical (dto)3˙−

    SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate

    Get PDF
    Bifunctional degrader molecules, known as proteolysis-targeting chimeras (PROTACs), function by recruiting a target to an E3 ligase, forming a target/PROTAC/ligase ternary complex. Despite the importance of this key intermediate species, no detailed validation of a method to directly determine binding parameters for ternary complex kinetics has been reported, and it remains to be addressed whether tuning the kinetics of PROTAC ternary complexes may be an effective strategy to improve the efficiency of targeted protein degradation. Here, we develop an SPR-based assay to quantify the stability of PROTAC-induced ternary complexes by measuring for the first time the kinetics of their formation and dissociation <i>in vitro</i> using purified proteins. We benchmark our assay using four PROTACs that target the bromodomains (BDs) of bromodomain and extraterminal domain proteins Brd2, Brd3, and Brd4 to the von Hippel–Lindau E3 ligase (VHL). We reveal marked differences in ternary complex off-rates for different PROTACs that exhibit either positive or negative cooperativity for ternary complex formation relative to binary binding. The positively cooperative degrader MZ1 forms comparatively stable and long-lived ternary complexes with either Brd4<sup>BD2</sup> or Brd2<sup>BD2</sup> and VHL. Equivalent complexes with Brd3<sup>BD2</sup> are destabilized due to a single amino acid difference (Glu/Gly swap) present in the bromodomain. We observe that this difference in ternary complex dissociative half-life correlates to a greater initial rate of intracellular degradation of Brd2 and Brd4 relative to Brd3. These findings establish a novel assay to measure the kinetics of PROTAC ternary complexes and elucidate the important kinetic parameters that drive effective target degradation

    Discovery of soticlestat, a potent and selective inhibitor for cholesterol 24-hydroxylase (CH24H)

    Get PDF
    Cholesterol 24-hydroxylase (CH24H, CYP46A1), a brain-specific cytochrome P450 (CYP) family enzyme, plays a role in the homeostasis of brain cholesterol by converting cholesterol to 24S-hydroxycholesterol (24HC). Despite a wide range of potential of CH24H as a drug target, no potent and selective inhibitors have been identified. Here, we report on the structure-based drug design (SBDD) of novel 4-arylpyridine derivatives based on the X-ray co-crystal structure of hit derivative 1b. Optimization of 4-arylpyridine derivatives led us to identify 3v ((4-benzyl-4-hydroxypiperidin-1-yl)­(2,4′-bipyridin-3-yl)­methanone, IC50 = 7.4 nM) as a highly potent, selective, and brain-penetrant CH24H inhibitor. Following oral administration to mice, 3v resulted in a dose-dependent reduction of 24HC levels in the brain (1, 3, and 10 mg/kg). Compound 3v (soticlestat, also known as TAK-935) is currently under clinical investigation for the treatment of Dravet syndrome and Lennox-Gastaut syndrome as a novel drug class for epilepsies

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Switchable pi-coordination and C-H metallation in small-cavity macrocyclic uranium and thorium complexes

    Get PDF
    New, conformationally restricted ThIV and UIV complexes, [ThCl2(L)] and [UI2(L)], of the small-cavity, dipyrrolide, dianionic macrocycle trans-calix[2]benzene[2]pyrrolide (L)2− are reported and are shown to have unusual κ5:κ5 binding in a bent metallocene-type structure. Single-electron reduction of [UI2(L)] affords [UI(THF)(L)] and results in a switch in ligand binding from κ5-pyrrolide to η6-arene sandwich coordination, demonstrating the preference for arene binding by the electron-rich UIII ion. Facile loss of THF from [UI(THF)(L)] further increases the amount of U–arene back donation. [UI(L)] can incorporate a further UIII equivalent, UI3, to form the very unusual dinuclear complex [U2I4(L)] in which the single macrocycle adopts both κ5:κ5 and η6:κ1:η6:κ1 binding modes in the same complex. Hybrid density functional theory calculations carried out to compare the electronic structures and bonding of [UIIII(L)] and [UIII2I4(L)] indicate increased contributions to the covalent bonding in [U2I4(L)] than in [UI(L)], and similar U–arene interactions in both. MO analysis and QTAIM calculations find minimal U–U interaction in [U2I4(L)]. In contrast to the reducible U complex, treatment of [ThCl2(L)] with either a reductant or non-nucleophilic base results in metallation of the aryl rings of the macrocycle to form the (L−2H)4− tetraanion and two new and robust Th–C bonds in the –ate complexes [K(THF)2ThIV(μ-Cl)(L−2H)]2 and K[ThIV{N(SiMe3)2}(L−2H)]

    Satyrae

    Get PDF
    Tít. en antep.: "Decii Junii Juvenalis Aquinatis Satyrae XVI"Enc. Perg.Sign.: ¶6, A-Q8, R
    • …
    corecore