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Abstract
Structural biology offers a versatile arsenal of techniques and
methods to investigate the structure and conformational dy-
namics of proteins and their assemblies. The growing field of
targeted protein degradation centres on the premise of devel-
oping small molecules, termed degraders, to induce proximity
between an E3 ligase and a protein of interest to be signalled
for degradation. This new drug modality brings with it new
opportunities and challenges to structural biologists. Here we
discuss how several structural biology techniques, including
nuclear magnetic resonance, cryo-electron microscopy, struc-
tural mass spectrometry and small angle scattering, have been
explored to complement X-ray crystallography in studying de-
graders and their ternary complexes. Together the studies
covered in this review make a case for the invaluable per-
spectives that integrative structural biology techniques in so-
lution can bring to understanding ternary complexes and
designing degraders.
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Introduction
Small-molecule degraders such as Proteolysis targeting
chimeras (PROTACs) and molecular glues work by
forming a ternary complex with an E3 ligase and a neo-
substrate. Within such complexes, degraders either

introduce de novo, or stabilize existing transient,
protein-protein interactions (PPIs). This results in
targeted ubiquitination and subsequent degradation of
the neo-substrate (Figure 1) [1e3]. Designing drugs
with the guidance of structural data has been the
mainstay of pharmaceutical research for decades, with
crystal structures offering a “view” into how to ratio-
nally design and optimise compounds. Targeted protein
degradation (TPD) presents new challenges and op-
portunities for structure-based drug design, as it ne-
cessitates a departure from solely optimising binary

protein/ligand interactions and requires additional in-
sights into the ternary complex structure, dynamics and
PPIs [4].

While protein interactions and protein complexes have
been studied by the established structural techniques of
X-ray crystallography and cryo-Electron Microscopy
(EM), these studies can be limited to more stable sys-
tems and made more challenging due to the often dy-
namic nature of PPIs, both in terms of the lifetime of
the complex as well as conformational flexibility [5,6].

This is especially problematic for ternary complexes
induced by degraders, as they may involve weak, tran-
sient interactions that get enhanced by the forced
proximity of the proteins. Nevertheless, key studies
have successfully demonstrated structure-based
PROTAC design driven by high resolution ternary
structures solved by X-ray crystallography [4,7e9]. A
potential limitation of using static X-ray structures to
describe dynamic systems is that crystals can act as a
filter that capture a single state, from an ensemble of
states that exist in solution. This homogeneity is

important for solving high resolution crystal structures,
where conformationally heterogeneous parts of a struc-
ture do not yield interpretable electron density. How-
ever, it can be difficult to ascertain whether the
crystallisable conformer fully reflects the dominant or
Current Opinion in Structural Biology 2023, 79:102534
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Figure 1

PROTACs and molecular glues: (a) Structures of a typical PROTAC (MZ1) and molecular glue (thalidomide). PROTACs are bivalent degraders featuring a
separate E3 ligase binding and protein of interest binding moiety, while glues are monovalent binders. (b) Both types of degraders share a similar
mechanism of degradation where the degrader induces the formation of a ternary complex between E3 ligase and protein of interest, which then leads to
ubiquitination and proteasomal degradation of the POI. However, the two degraders differ in the mode of ternary complex formation, as glues have no
detectable affinity to one of the proteins, meaning only one binary complex can form as an intermediate (c). PROTACs have binary affinities to both
proteins, so that two different binary complexes exist in equilibrium with the ternary complex (d).

2 New Concepts in Drug Discovery
functional conformation(s) in solution [10,11]. This
caveat is supported by recent molecular dynamics sim-
ulations, which showed that the conformational land-

scape of degrader ternary complexes may be much more
diverse than the poses observed in crystal structures
[10,12]. This can lead to cases where the crystal struc-
tures of ternary complexes with different degraders
bound may appear very similar, but their global attri-
butes, including both binding affinities [11] and
Current Opinion in Structural Biology 2023, 79:102534
functional consequences to missense surface mutations
[13] can differ significantly.

To shine a light on what is unseen in crystal structures,
orthogonal techniques should be explored to study the
structure and conformational heterogeneity of macro-
molecular complexes in solution. Several alternative
techniques have been employed to investigate transient
and dynamic interactions across different fields, most
www.sciencedirect.com
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Studying protein degraders in solution Haubrich et al. 3
notably in the study of protein/RNA complexes
[14e18]. These techniques include nuclear magnetic
resonance spectroscopy (NMR), small angle scattering
(SAXS) and structural mass spectrometry (MS). Indi-
vidually, these techniques have their own limitations
that may either render them unable to provide data of
comparable atomic resolution to crystallography or cryo-
EM, or restrict the size of system under study, None-

theless, the techniques complement X-ray and cryo-EM
as well as each other, and offer an integrative approach
that can facilitate insights into the structure and dy-
namics of protein complexes. The purpose of this review
is therefore to highlight the use of these techniques in
the field of targeted protein degradation and make a
case for the wider use of solution structural methods and
integrative structural biology, as complementary ap-
proaches to crystallography for the study of ternary
complexes.

Nuclear magnetic resonance spectroscopy
NMR is the only solution technique capable of delivering
atomic resolution structures [19]. Despite this, very few
NMR studies of ternary complexes have been reported

and NMR studies on PROTACs and molecular glues to
date are largely limited to ligand-observed studies.
Structural studies by NMR have recently given unique
insights into the ‘chameleonicity” of PROTACs, ration-
alising how PROTACs remain cell permeable despite
their high molecular weight and bifunctional nature
made of two binding ligands joined by a linker. Nuclear
Overhauser Effect Spectroscopy (NOESY) based struc-
tural ensembles of PROTACs, in chloroform or water/
DMSO mixtures to mimic the hydrophobicity of
different environments in the cytosol and cell mem-

branes, demonstrated that some PROTACs can fold by
stacking their ligase and neo-substrate binding moieties
on top of each other, thereby shielding hydrophilic re-
gions and allowing the PROTAC to cross cell membranes
[20]. NMR is well-established as an extremely sensitive
technique to detect even transient protein/ligand in-
teractions. 1H saturation transfer difference (STD)
NMR was used to confirm the weak interaction of the
molecular glue indisulam with the E3 ligase substrate
receptor DCAF15 in the absence of a neo-substrate [21].
Competitive NMR with a 19F-labelled probe was used to
estimate affinities and cooperativity of ternary complex

formation for VHL/Bromodomain recruiting and VHL-
homodimerising PROTACs [22].

To our knowledge, the only study to date employing
protein NMR on PROTAC-induced ternary complexes
used 1H/15N-HSQCs to investigate proximity induced
PPIs in PROTAC-ternary complexes and relate to
cooperativity [23]. This study looked at cIAP1-based
BTK degraders that showed multiple poses in the
crystal structure, each with limited contacts between
the proteins. While constraints and contacts within the

crystal lattice could have influenced or enforced the
www.sciencedirect.com
state observed in the crystal, 1H/15N-HSQC spectra of
cIAP1Bir3 in the ternary complex overlayed well with
that of the binary cIAP1Bir3/degrader complex, consis-
tent with no stable PPIs forming in solution. However,
diffusion observed NMR (DOSY) still confirmed the
formation of a ternary complex through an increase in
the diffusion coefficient.

More studies of ternary complexes have likely been
prevented by the size limitations of protein-observed
NMR, historically making NMR studies of complexes
exceeding 35 kDa difficult due to excessive line broad-
ening and spectral crowding. However, over the past 20
years technical innovations such as Transverse relaxation
optimized spectroscopy (TROSY), selective labelling
and structure calculations relying on long distance re-
straints such as paramagnetic relaxation enhancement
(PREs), pseudocontact shifts (PCS) or residual dipolar
coupling (RDCs) rather than NOESYs have allowed

NMR to largely overcome these limitations [16,24e26].
To date the largest protein structures solved de novo by
NMR exceed 80 kDa (e.g., malate synthase G or
Translocase Motor SecA) [27,28] and it has been shown
to be capable of studying protein/protein interfaces and
dynamics of complexes several hundred kilodaltons in
size (e.g., 390 kDa RNP complex box C/D or even the
20S proteasome) [15,29]. This brings even the largest
ternary complexes in range of NMR studies.

NMR could be useful in the TPD field to map or vali-

date weak PPIs in solution using e.g., cross-saturation
experiments or chemical shift perturbations in SEA-
TROSYs even for large complexes [30,31]. Most NMR
techniques require stable isotope labelling (most
commonly 15N, 13C, 2H), which can be costly and
difficult to achieve in some expression systems. How-
ever, the reliance on specific labelling patterns also
allows for detailed studies of specific, selectively
labelled subcomponents in the context of the full
complex, giving NMR unique capabilities for structural
studies. For example, it would be possible to study the
conformational ensemble of a PROTAC in the presence

of its interacting proteins, if these are masked by
deuteration, and thereby gaining insights into confor-
mational selection upon complex formation.

Structural mass spectrometry
Structural mass spectrometry (MS) refers to a collection
of MS techniques that provide information on the
higher-order structure of proteins and their complexes
[32]. Native MS approaches including ion-mobility
(IM)-MS are used to characterize stoichiometry, size,
shape, and distribution of conformations and in-
teractions (while retaining the native structure of the
protein/protein complexes, by gentle ionisation
methods such as nano-electrospray. On the other hand,
labelling techniques such as hydrogen-deuterium ex-

change (HDX)-MS take advantage of the rapid
Current Opinion in Structural Biology 2023, 79:102534
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4 New Concepts in Drug Discovery
exchange of deuterium with solvent exposed amide
hydrogens in deuterated buffer. The exchange is then
quenched, the protein rapidly digested and the peptides
are analysed by MS. Mass analysis is used to determine
increased mass due to deuterium uptake. For structural
interpretation the peptides are mapped on a three-
dimensional model.

Several studies have investigated degrader ternary
complexes by MS. The first of these studies by Zorba
et al. (2018) focused on understanding the role of
cooperativity in cereblon-recruiting degraders target-
ing BTK [33]. The study utilised HDX-MS and
despite comprehensive experiments, Zorba et al. were
not able to identify any interacting residues. This may
have been due to the use of a truncated cereblon
construct [33]. Later, a study by Eron et al. (2021)
utilised a longer cereblon construct (only missing N-
terminal residues 1e39) and demonstrated that the

BRD4 (BD1) degrader CFT-1297 was able to induce
HDX-MS protection of several residues at the BD1-
cereblon interface, which corresponds to its binding
site [34]. However, in a similar experiment with a
different degrader, dBET6, HDX-MS protection at the
same interface could not be detected, suggesting a lack
of stable, highly populated ternary complex interfaces
found in solution in this case. Both studies focussed on
cereblon and suggest a more complex conformational
landscape for cereblon-recruiting degraders. Indeed,
Watson et al. (2022) recently used HDX-MS and cryo-

EM to investigate the allosteric effect of molecular
glue binding to cereblon that results in a “closed”
versus “open” conformation of cereblon. They found
that the addition of the ligand resulted in reduced
solvent exposure, relative to the apo state, at the
interface of the Lon and the thalidomide binding
domain (TBD), consistent with a transition from an
open to a closed conformation. A dramatic change in
protection was observed at the “sensor loop” in the
TBD. This data, together with extensive cryo-EM
structural investigations (vide infra), shone light into
an allosteric mechanism by which ligand binding in-

duces the sensor loop to detach from the helical
bundle in cereblon and adopt an upright beta-hairpin
arrangement. The detachment allows the TBD to
become untethered and interact with the Lon domain
of cereblon, resulting in the closed conformation that
favours neo-substrate recruitment.

In another study, Dixon et al. (2022) [11] used HDX-
MS with VHL-recruiting PROTAC degraders of
SMARCA2/4 to show clear and significant protection of
residues at the protein-protein interface, consistent

with previously determined ternary complex cocrystal
structures [7]. This HDX-MS data was fed into in silico
docking studies and improved the ability to predict
ternary complexes, demonstrating the utility of this
method for enriching computational techniques [11].
Current Opinion in Structural Biology 2023, 79:102534
In a departure from HDX-MS, Beveridge et al. (2020)
showed that native mass spectrometry can effectively
predict degrader efficacy [35]. A clear correlation was
observed between a higher fraction of ternary complex
observed in theMSspectra and favourable thermodynamic
andkinetic parameters such as increased cooperativity and
longer half-lives of the ternary complex, as determined in a
previous study using surface-plasmon resonance (SPR)

and fluorescence polarization (FP) binding assays [36]. In
their study, Beveridge et al. focussedpredominantly on the
well-characterised BRD:MZ1/AT1:VCB systems [4,36]
(Figure 1a). It would be interesting to uncover if similar
correlations could be observed using native-MS for other
systems. Finally, a study by Song et al. (2021) used ion-
mobility MS to show that BRD4:MZ1:VCB was able to
populate a distribution of several distinct conformations
[37], some of which had not been observed crystallo-
graphically [4]. Ionmobility resolves conformational states
as ions travel through the drift tube, with more compact

structures travelling faster than those with a larger cross-
sectional area. Moreover, the study employed gas-phase
fragmentation methods such as collision induced
dissociation (CID) and electron capture dissociation
(ECD) to allow for themapping of ligand interaction sites.
UsingCID, it was observed that themore compact ternary
complexes have protein-protein interactions that allow a
binary VCB:BRD4 complex to persist when MZ1 is elim-
inated. This implies the significance of those PPIs in
stabilising the ternary complexes. It should be noted that
the VCB:BRD4 binary complexes have not been observed

in solution in the absence of MZ1 [4].

Together these articles demonstrate how structural MS
techniques can augment our understanding of ternary
complexes and provide information on the whole
conformational landscape (via IM-MS). Through HDX-
MS we can gather information on the protein-protein
interface which can help us understand systems that
suffer from an absence of X-ray/EM data.

Small angle X-ray scattering
Small Angle X-ray scattering (SAXS) is a high-
throughput, in solution technique that requires mini-
mal sample preparation after the protein has been pu-
rified, with most physiologically relevant buffers being
suitable. SAXS is one of the few techniques that can be
used to examine highly flexible proteins and for systems
within a wide range of sizes 1e1000 nm [38]. Moreover,
where sample availability may be limiting, a good scat-
tering curve can be obtained from dilute solutions. The

main caveat for SAXS is that the data obtained is low
resolution and often needs to be supplemented by data
obtained via higher resolution methods, e.g, existing
structures of sub-complexes. It can also be challenging
to interpret heterogeneous distributions unless there is
prior knowledge of the system. So far, this technique
has not been widely exploited by the TPD community,
however its use can augment in silico searches as
www.sciencedirect.com
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Table 1

Summary of structural biology techniques with their strengths and limitations.

Technique Resolution Feasible system size
limits

Is Flexibility an
issue?

Protein
requirements

Advantages Disadvantages References

X-ray
Crystallography

Atomistic/high Limited by flexibility Yes Moderate-high Atomistic resolution allows
protein-ligand and
protein-protein
interactions to be
scrutinised.

Crystallisation of the system
is dependent on
favourable crystal
contacts that filter for a
single conformation.

[4,7,10,62]

High throughput due to high
degree of automatization

Ternary complexes with
inherent flexibility and/or
lower cooperativity may
be difficult to crystalise.

Accessible to non-experts
Still the gold standard for
binary protein/ligand
interactions and rigid
systems

NMR Atomistic/high Up to 40 kDa for atomic
resolution
experiments. Up to
1 MDa with TROSY
experiments and
selective labelling.

No Moderate-high Atomistic resolution in
solution that allows for the
observation of dynamics.
Gives insight to PROTAC
conformations. Can map/
validate weak PPI.
Labelling allows for the
selective analysis of
particular components in
the system.

Isotope labelling can be
challenging and
expensive.

[20–23]

Atomistic resolution can be
challenging to achieve for
big complexes.

Low throughput for structure
elucidation

Cryo-EM Atomistic/high-
moderate

38 kDa (theoretical)
-5 MDa

Potentially
makes data
analysis
complicated

Low Can achieve good
resolution on large protein
complexes.

Sample and grid
optimisation can be
challenging.

[21,44]

High resolution for larger
complexes may be
difficult to achieve without
crossing linking.

Low contrast for small
proteins.

Heterogeneous conformer
populations can be hard
to interpret due to data
being averaged.

Resolves conformational
and constitutional
heterogeneity

Low throughput

SAXS Low 1–1000 nm No Low High throughput and can
use most physiologically
relevant buffers.

Resolution is low and may
need to be supplemented
by higher resolution data
or other data on the
system to help
interpretation.

[11]

Good scattering curve can
also be obtained for dilute
samples.

(continued on next page)
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demonstrated by Dixon et al. (2022) [11]. In this study,
SAXS data was used to validate molecular dynamics
derived conformational ensembles of SMARCA2/
4:ACBI1:VHL ternary complexes [7] by producing
theoretical SAXS curves for each conformer in the
ensemble. Additionally, it was recently shown that
SAXS can be used as a structural screening tool, as
SAXS is sensitive to changes in size and shape that

allows for estimation of the relative proportion of
ternary complex in solution and classification based on
structural similarity [39]. We believe that there is sig-
nificant scope for SAXS to be utilised to screen for
ternary complexes in TPD due to its high-throughput
and structural sensitivity.

Cryo-electron microscopy
Although not a true solution technique as it relies on
capturing the sample in a layer of vitrified ice, cryo-EM
shares many of the desired properties of these tech-
niques and crucially, unlike crystallography, retains in-
formation about conformational heterogeneity in
solution. In addition, due to recent technological ad-
vancements it is now capable of delivering near atomic-

resolution structures of comparable quality to crystal-
lography for systems of sufficient size [40e42]. In the
TPD field, these capabilities have been used to obtain a
3.5 Å structure of the ternary complex of DDB1-DCAF15
and RBM39, induced by the molecular glue indisulam
[21]. Another study published around the same time
reported a 4.4 Å cryo-EM map of the DDB1-DCAF15/
RBM39 complex induced by the glue E7820, however
the resolution of the cryo-EM maps were insufficient to
reliably interpret E7820 binding, and required a separate
co-crystal structure of DDB1-DCAF15:E7820:RBM39 to

build an unambiguousmodel of the ternary complex [43].
Recently, a series of cryo-EM structures using iterative
heterogeneous classification gave new insights into the
conformational dynamics of cereblon apo-form and in the
presence of molecular glues [44]. This highlights the
ability of cryo-EM to resolve heterogeneous conforma-
tions in solution while maintaining high resolution,
allowing for insights into heterogenous systems unob-
tainable by crystallography. For now, these additional ca-
pabilities come with increased costs in terms of the
necessary equipment, expertise, and experiment time, as
cryo-EM has not yet reached the level of automation,

throughput and convenience found in crystallography. A
significant factor here is that cryo-EM still suffers from
limitations due to charge and surface effects, preferred
particle orientations and the need for classification and
averaging, all of which require careful and time-
consuming optimisation of the sample preparation and
typically limit its applicability to complexes of consider-
able size and limited flexibility [45].

Bringing it all together in silico
Structural biology has long benefitted and will continue
to advance from being able to model protein systems in
www.sciencedirect.com
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Studying protein degraders in solution Haubrich et al. 7
silico. The potential impact of combining in silico model-
ling with experimental methods is more significant when
it comes to solution structural biology techniques. These
techniques often suffer from limited information content
and may require combining multiple approaches [46].
This has led to the development of software packages for
integrative modelling such as the Integrative Modeling
Platform (IMP) or HADDOCK, that allow for refine-

ment of structural models against sparse restraints ob-
tained from diverse methods, including shape and
distance restraints as well as interaction surfaces [47,48].
Although the TPD community has already shown an
enthusiastic interest in utilising computational methods
to develop a better understanding of the degrader’s
mode of action, and to create theoretical/predictive
models to design more effectively potent and faster de-
graders, it has only started to recognize the power of
integrative modelling [11,12,49e52].

Conclusion
The ability to reliably generate high-resolution data
with X-ray crystallography to rationally design drugs has
revolutionized our methods to discover and optimize
drug molecules. This has been possible due to the ef-
forts of the X-ray crystallography community in devel-
oping tools ranging from automated pipelines for

crystallization, data collection and processing to model
building and data curation and visualisation. These not
only allow for high-throughput structure determination,
but also make crystallography accessible to the non-
expert [53e56]. Currently no other structural biology
technique offers a comparable user experience, except
for SAXS that benefits from highly automated beam-
lines, software pipelines and public repositories
[57e59]. Although SAXS and alternative techniques can
generate a wealth of information, analysis and inter-
pretation of the data typically requires expert knowl-

edge. From being able to solve high-resolution
structures of multi-subunit complexes with cryo-EM,
studying transient interactions by NMR or HDX-MS
and characterizing conformational heterogeneity of
proteins with native ion mobility mass spectrometry,
these solution-based structural biology techniques offer
unique insights into dynamic systems and transient in-
teractions that may be invisible to X-ray crystallography
(Table 1). However, for these techniques to be im-
pactful continued efforts are necessary to make them
more accessible to a non-expert user, increase

throughput and allow for easy visualisation and inter-
pretation of results. This is all the more true as these
techniques are best used as part of an integrative
approach that balances the strengths and weaknesses of
different techniques and leverages previous knowledge
through in silico modelling. While this review focused on
techniques that have so far been successfully used in the
TPD field, additional techniques are available that can
be utilised as part of an integrative approach or to answer
www.sciencedirect.com
specific questions. For example small-angle neutron
scattering (SANS) using contrast matching could be
useful to study the position and conformation of indi-
vidual subunits in the context of a larger complex [60].
Electron paramagnetic resonance (EPR)-based tech-
niques such as DEER or RIDME measure the distance
distribution between two paramagnetic labels and can
thereby give direct insight into the conformational

heterogeneity of a complex [61]. As the field grows it
will be interesting to see methods for studying the
structure and dynamics of ternary complexes evolve.
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