180 research outputs found
Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools
There has been considerable growth and interest in industrial applications of
machine learning (ML) in recent years. ML engineers, as a consequence, are in
high demand across the industry, yet improving the efficiency of ML engineers
remains a fundamental challenge. Automated machine learning (AutoML) has
emerged as a way to save time and effort on repetitive tasks in ML pipelines,
such as data pre-processing, feature engineering, model selection,
hyperparameter optimization, and prediction result analysis. In this paper, we
investigate the current state of AutoML tools aiming to automate these tasks.
We conduct various evaluations of the tools on many datasets, in different data
segments, to examine their performance, and compare their advantages and
disadvantages on different test cases
Extended Functionalities of Photovoltaic Systems with Flexible Power Point Tracking:Recent Advances
The power system is experiencing an ever-increasing integration of photovoltaic power plants (PVPPs), which leads demand on the power system operators to force new requirements to sustain with quality and reliability of the grid. Subsequently, a significant quantity of flexible power point tracking (FPPT) algorithms have been proposed in the literature to enhance functionalities PVPPs. The intention of FPPT algorithms is to regulate the PV power to a specific value imposed by the grid codes and operational conditions. This will inevitably interfere the maximum power point tracking (MPPT) operation of PV systems. Nevertheless, the FPPT control makes PVPPs much more grid-friendly. The main contribution of this paper is to comprehensively compare available FPPT algorithms in the literature from different aspects and provide a benchmark for researchers and engineers to select suitable FPPT algorithms for specific applications. A classification and short description of them are provided. The dynamic performances of the investigated algorithms are compared with experimental tests on a scaled-down prototype. Directions for future studies in this area are also presented.MOE (Min. of Education, S’pore)Accepted versio
An improved optimization technique for estimation of solar photovoltaic parameters
The nonlinear current vs voltage (I-V) characteristics of solar PV make its modelling difficult. Optimization techniques are the best tool for identifying the parameters of nonlinear models. Even though, there are different optimization techniques used for parameter estimation of solar PV, still the best optimized results are not achieved to date. In this paper, Wind Driven Optimization (WDO) technique is proposed as the new method for identifying the parameters of solar PV. The accuracy and convergence time of the proposed method is compared with results of Pattern Search (PS), Genetic Algorithm (GA), and Simulated Annealing (SA) for single diode and double diode models of solar PV. Furthermore, for performance validation, the parameters obtained through WDO are compared with hybrid Bee Pollinator Flower Pollination Algorithm (BPFPA), Flower Pollination Algorithm (FPA), Generalized Oppositional Teaching Learning Based Optimization (GOTLBO), Artificial Bee Swarm Optimization (ABSO), and Harmony Search (HS). The obtained results clearly reveal that WDO algorithm can provide accurate optimized values with less number of iterations at different environmental conditions. Therefore, the WDO can be recommended as the best optimization algorithm for parameter estimation of solar PV
Grid-Connected Energy Storage Systems: State-of-the-Art and Emerging Technologies
High penetration of renewable energy resources in the power system results in various new challenges for power system operators. One of the promising solutions to sustain the quality and reliability of the power system is the integration of energy storage systems (ESSs). This article investigates the current and emerging trends and technologies for grid-connected ESSs. Different technologies of ESSs categorized as mechanical, electrical, electrochemical, chemical, and thermal are briefly explained. Especially, a detailed review of battery ESSs (BESSs) is provided as they are attracting much attention owing, in part, to the ongoing electrification of transportation. Then, the services that grid-connected ESSs provide to the grid are discussed. Grid connection of the BESSs requires power electronic converters. Therefore, a survey of popular power converter topologies, including transformer-based, transformerless with distributed or common dc-link, and hybrid systems, along with some discussions for implementing advanced grid support functionalities in the BESS control, is presented. Furthermore, the requirements of new standards and grid codes for grid-connected BESSs are reviewed for several countries around the globe. Finally, emerging technologies, including flexible power control of photovoltaic systems, hydrogen, and second-life batteries from electric vehicles, are discussed in this article.This work was supported in part by the Office of Naval Research Global under Grant N62909-19-1-2081, in part by the National Research Foundation of Singapore Investigatorship under Award NRFI2017-08, and in part by the I2001E0069 Industrial Alignment Funding. (Corresponding author: Josep Pou.
Electronic Medical Record Inaccuracies: Multicenter Analysis of Challenges with Modified Lung Cancer Screening Criteria.
The National Comprehensive Cancer Network expanded their lung cancer screening (LCS) criteria to comprise one additional clinical risk factor, including chronic obstructive pulmonary disease (COPD). The electronic medical record (EMR) is a source of clinical information that could identify high-risk populations for LCS, including a diagnosis of COPD; however, an unsubstantiated COPD diagnosis in the EMR may lead to inappropriate LCS referrals. We aimed to detect the prevalence of unsubstantiated COPD diagnosis in the EMR for LCS referrals, to determine the efficacy of utilizing the EMR as an accurate population-based eligibility screening trigger using modified clinical criteria. We performed a multicenter review of all individuals referred to three LCS programs from 2012 to 2015. Each individual\u27s EMR was searched for COPD diagnostic terms and the presence of a diagnostic pulmonary functionality test (PFT). An unsubstantiated COPD diagnosis was defined by an individual\u27s EMR containing a COPD term with no PFTs present, or the presence of PFTs without evidence of obstruction. A total of 2834 referred individuals were identified, of which 30% (840/2834) had a COPD term present in their EMR. Of these, 68% (571/840) were considered unsubstantiated diagnoses: 86% (489/571) due to absent PFTs and 14% (82/571) due to PFTs demonstrating no evidence of postbronchodilation obstruction. A large proportion of individuals referred for LCS may have an unsubstantiated COPD diagnosis within their EMR. Thus, utilizing the EMR as a population-based eligibility screening tool, employing expanded criteria, may lead to individuals being referred, potentially, inappropriately for LCS
Correlated physical and mental health summary scores for the SF-36 and SF-12 Health Survey, V.1
<p>Abstract</p> <p>Background</p> <p>The SF-36 and SF-12 summary scores were derived using an uncorrelated (orthogonal) factor solution. We estimate SF-36 and SF-12 summary scores using a correlated (oblique) physical and mental health factor model.</p> <p>Methods</p> <p>We administered the SF-36 to 7,093 patients who received medical care from an independent association of 48 physician groups in the western United States. Correlated physical health (PCS<sub>c</sub>) and mental health (MCS<sub>c</sub>) scores were constructed by multiplying each SF-36 scale z-score by its respective scoring coefficient from the obliquely rotated two factor solution. PCS<sub>c</sub>-12 and MCS<sub>c</sub>-12 scores were estimated using an approach similar to the one used to derive the original SF-12 summary scores.</p> <p>Results</p> <p>The estimated correlation between SF-36 PCS<sub>c </sub>and MCS<sub>c </sub>scores was 0.62. There were far fewer negative factor scoring coefficients for the oblique factor solution compared to the factor scoring coefficients produced by the standard orthogonal factor solution. Similar results were found for PCS<sub>c</sub>-12, and MCS<sub>c</sub>-12 summary scores.</p> <p>Conclusion</p> <p>Correlated physical and mental health summary scores for the SF-36 and SF-12 derived from an obliquely rotated factor solution should be used along with the uncorrelated summary scores. The new scoring algorithm can reduce inconsistent results between the SF-36 scale scores and physical and mental health summary scores reported in some prior studies.</p> <p>(Subscripts C = correlated and UC = uncorrelated)</p
Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items
The use of global health items permits an efficient way of gathering general perceptions of health. These items provide useful summary information about health and are predictive of health care utilization and subsequent mortality.
Analyses of 10 self-reported global health items obtained from an internet survey as part of the Patient-Reported Outcome Measurement Information System (PROMIS) project. We derived summary scores from the global health items. We estimated the associations of the summary scores with the EQ-5D index score and the PROMIS physical function, pain, fatigue, emotional distress, and social health domain scores.
Exploratory and confirmatory factor analyses supported a two-factor model. Global physical health (GPH; 4 items on overall physical health, physical function, pain, and fatigue) and global mental health (GMH; 4 items on quality of life, mental health, satisfaction with social activities, and emotional problems) scales were created. The scales had internal consistency reliability coefficients of 0.81 and 0.86, respectively. GPH correlated more strongly with the EQ-5D than did GMH (r = 0.76 vs. 0.59). GPH correlated most strongly with pain impact (r = −0.75) whereas GMH correlated most strongly with depressive symptoms (r = −0.71).
Two dimensions representing physical and mental health underlie the global health items in PROMIS. These global health scales can be used to efficiently summarize physical and mental health in patient-reported outcome studies
Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search
A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways
Paradoxical Changes: EMMPRIN Tissue and Plasma Levels in Marfan Syndrome-Related Thoracic Aortic Aneurysms
Background: Thoracic aortic aneurysms (TAAs) associated with Marfan syndrome (MFS) are unique in that extracellular matrix metalloproteinase inducer (EMMPRIN) levels do not behave the way they do in other cardiovascular pathologies. EMMPRIN is shed into the circulation through the secretion of extracellular vesicles. This has been demonstrated to be dependent upon the Membrane Type-1 MMP (MT1-MMP). We investigated this relationship in MFS TAA tissue and plasma to discern why unique profiles may exist. Methods: Protein targets were measured in aortic tissue and plasma from MFS patients with TAAs and were compared to healthy controls. The abundance and location of MT1-MMP was modified in aortic fibroblasts and secreted EMMPRIN was measured in conditioned culture media. Results: EMMPRIN levels were elevated in MFS TAA tissue but reduced in plasma, compared to the controls. Tissue EMMPRIN elevation did not induce MMP-3, MMP-8, or TIMP-1 expression, while MT1-MMP and TIMP-2 were elevated. MMP-2 and MMP-9 were reduced in TAA tissue but increased in plasma. In aortic fibroblasts, EMMPRIN secretion required the internalization of MT1-MMP. Conclusions: In MFS, impaired EMMPRIN secretion likely contributes to higher tissue levels, influenced by MT1-MMP cellular localization. Low EMMPRIN levels, in conjunction with other MMP analytes, distinguished MFS TAAs from controls, suggesting diagnostic potential
Characterization of the innate immune response to chronic aspiration in a novel rodent model
<p>Abstract</p> <p>Background</p> <p>Although chronic aspiration has been associated with several pulmonary diseases, the inflammatory response has not been characterized. A novel rodent model of chronic aspiration was therefore developed in order to investigate the resulting innate immune response in the lung.</p> <p>Methods</p> <p>Gastric fluid or normal saline was instilled into the left lung of rats (n = 48) weekly for 4, 8, 12, or 16 weeks (n = 6 each group). Thereafter, bronchoalveolar lavage specimens were collected and cellular phenotypes and cytokine concentrations of IL-1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-gamma, TNF-alpha, and TGF-beta were determined.</p> <p>Results</p> <p>Following the administration of gastric fluid but not normal saline, histologic specimens exhibited prominent evidence of giant cells, fibrosis, lymphocytic bronchiolitis, and obliterative bronchiolitis. Bronchoalveolar lavage specimens from the left (treated) lungs exhibited consistently higher macrophages and T cells with an increased CD4:CD8 T cell ratio after treatment with gastric fluid compared to normal saline. The concentrations of IL-1alpha, IL-1beta, IL-2, TNF-alpha and TGF-beta were increased in bronchoalveolar lavage specimens following gastric fluid aspiration compared to normal saline.</p> <p>Conclusion</p> <p>This represents the first description of the pulmonary inflammatory response that results from chronic aspiration. Repetitive aspiration events can initiate an inflammatory response consisting of macrophages and T cells that is associated with increased TGF-beta, TNF-alpha, IL-1alpha, IL-1beta, IL-2 and fibrosis in the lung. Combined with the observation of gastric fluid-induced lymphocyitic bronchiolitis and obliterative bronchiolitis, these findings further support an association between chronic aspiration and pulmonary diseases, such as obliterative bronchiolitis, pulmonary fibrosis, and asthma.</p
- …