4,255 research outputs found
The Zeta Function Method and the Harmonic Oscillator Propagator
We show how the pre-exponential factor of the Feynman propagator for the
harmonic oscillator can be computed by the generalized -function method.
Besides, we establish a direct equivalence between this method and Schwinger's
propertime method.Comment: 12 latex pages, no figure
Advances in surface EMG signal simulation with analytical and numerical descriptions of the volume conductor
Surface electromyographic (EMG) signal modeling is important for signal interpretation, testing of processing algorithms, detection system design, and didactic purposes. Various surface EMG signal models have been proposed in the literature. In this study we focus on 1) the proposal of a method for modeling surface EMG signals by either analytical or numerical descriptions of the volume conductor for space-invariant systems, and 2) the development of advanced models of the volume conductor by numerical approaches, accurately describing not only the volume conductor geometry, as mainly done in the past, but also the conductivity tensor of the muscle tissue. For volume conductors that are space-invariant in the direction of source propagation, the surface potentials generated by any source can be computed by one-dimensional convolutions, once the volume conductor transfer function is derived (analytically or numerically). Conversely, more complex volume conductors require a complete numerical approach. In a numerical approach, the conductivity tensor of the muscle tissue should be matched with the fiber orientation. In some cases (e.g., multi-pinnate muscles) accurate description of the conductivity tensor may be very complex. A method for relating the conductivity tensor of the muscle tissue, to be used in a numerical approach, to the curve describing the muscle fibers is presented and applied to representatively investigate a bi-pinnate muscle with rectilinear and curvilinear fibers. The study thus propose an approach for surface EMG signal simulation in space invariant systems as well as new models of the volume conductor using numerical methods
One-dimensional symmetry and Liouville type results for the fourth order Allen-Cahn equation in R
In this paper, we prove an analogue of Gibbons' conjecture for the extended
fourth order Allen-Cahn equation in R N , as well as Liouville type results for
some solutions converging to the same value at infinity in a given direction.
We also prove a priori bounds and further one-dimensional symmetry and rigidity
results for semilinear fourth order elliptic equations with more general
nonlinearities
Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes
BACKGROUND: Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc.
METHODS: Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells.
RESULTS: Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes.
CONCLUSION: This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway in primary monocytes. Immunogenicity of infectious EBV suggests a novel mechanism mediating monocyte inflammation in SSc, by which EBV triggers the innate immune response in infected cells
Effective action in DSR1 quantum field theory
We present the one-loop effective action of a quantum scalar field with DSR1
space-time symmetry as a sum over field modes. The effective action has real
and imaginary parts and manifest charge conjugation asymmetry, which provides
an alternative theoretical setting to the study of the particle-antiparticle
asymmetry in nature.Comment: 8 page
Kinetic description of particle interaction with a gravitational wave
The interaction of charged particles, moving in a uniform magnetic field,
with a plane-polarized gravitational wave is considered using the
Fokker-Planck- Kolmogorov (FPK) approach. By using a stochasticity criterion,
we determine the exact locations in phase space, where resonance overlapping
occurs. We investigate the diffusion of orbits around each primary resonance of
order (m) by deriving general analytical expressions for an effective diffusion
coeficient. A solution to the corresponding diffusion equation (Fokker-Planck
equation) for the static case is found. Numerical integration of the full
equations of motion and subsequent calculation of the diffusion coefficient
verifies the analytical results.Comment: LaTeX file, 15 page
Durable Modified Polyacrylic Coatings for Cultural Heritage Protection
INTRODUCTION
Deterioration phenomena of ancient and modern stone cultural heritage are natural and unrestrainable decay processes mainly arising from water adsorption and percolation into stone building materials1. Once water attacks and penetrates stone surfaces, several chemical, physical and biological degradation processes can occur altering significantly, and in some cases even irreversibly, the properties of stone materials.
The application of hydrophobic coatings to stone surfaces is mandatory to protect stone artefacts from the deleterious effects occurring in the case of water exposition. The protective agent must possess several features, i.e. high compatibility with the substrate, high durability, transparency, easiness of application and removal, water-repellency, capability to avoid the attack of organic and inorganic contaminants; moreover, it should be permeable to water vapor.
The aim of the present work was to synthesize new polymer coatings as stone protective with satisfactory water repellent properties and improved durability, thanks to the combined use of fluorinated and long alkyl chain monomers and without the use of any photo stabilizers agents.
EXPERIMENTAL/THEORETICAL STUDY
New types of polymer protectives were prepared via free radical polymerization between either 1H,1H,2H,2H-Perfluoro-octyl-methacrylate (POMA) or commercial stearyl methacrylate (STEA, Sigma Aldrich) and methacrylic monomers (methyl, MMA, and n-butyl, nBuMA, methacrylates)2,3. Specifically, POMA was synthesized via esterification reaction using methacryloyl chloride and 1H,1H,2H,2H-Perfluoro-1-octanol.
RESULTS AND DISCUSSION
The properties of the home-made hydrophobizing polymers in terms of macromolecular structure, molecular weights, thermal features and water repellency were determined. Furthermore, the long-term behavior of these polymeric protective agents was estimated by means of accelerated aging tests exploiting UV radiations (in according to UNI 10925:2001 standard method for 100h, 315-400 nm for UVA rays and 280-315 nm for UVB ones). Their behavior over time was checked via Size Exclusion Chromatography (SEC) by evaluating Mn and D data of aged polymeric samples (Table 1) and by Fourier Transform Infrared (FT-IR) spectroscopy.
By evaluating Mn and D data reported in Table 1, all the synthesized polymers seem to be unaffected by UV aging.
Thus, the present stable resins were applied on both natural (Botticino marble) and artificial (mortar) stone substrates and their wetting properties together with their absorption by capillarity and water vapour permeability were successfully assessed and compared. All the covered substrates show an increase of water contact angle of around 50\ub0 and a decrease in water absorption and permeation of about 50% and 20%, respectively.
Lastly, in order to evaluate the stability of the applied coatings towards degradation induced by solar radiation and interaction with the atmospheric pollution, exposure to a typical polluted urban environment for some months have been carried out. For this purpose, the following analyses have been performed: contact angle measurements, SEM-EDS (Scanning Electron Microscopy with X-ray microanalysis), IC (Ion Chromatography), and colorimetric tests by CIELab elaboration.
CONCLUSION
The use of polymeric protectives is very advantageous in fields when the hydrophobic properties and high chemical stability are required. Within this context, the use of polymer resins bearing methacrylic and fluorinated monomers along the polymeric chain can be a way to create tailor-made water repellent materials with enhanced durability, without the addition of any stabilizing agent
Noncommutative geometry and stochastic processes
The recent analysis on noncommutative geometry, showing quantization of the
volume for the Riemannian manifold entering the geometry, can support a view of
quantum mechanics as arising by a stochastic process on it. A class of
stochastic processes can be devised, arising as fractional powers of an
ordinary Wiener process, that reproduce in a proper way a stochastic process on
a noncommutative geometry. These processes are characterized by producing
complex values and so, the corresponding Fokker-Planck equation resembles the
Schroedinger equation. Indeed, by a direct numerical check, one can recover the
kernel of the Schroedinger equation starting by an ordinary Brownian motion.
This class of stochastic processes needs a Clifford algebra to exist. In four
dimensions, the full set of Dirac matrices is needed and the corresponding
stochastic process in a noncommutative geometry is easily recovered as is the
Dirac equation in the Klein-Gordon form being it the Fokker--Planck equation of
the process.Comment: 16 pages, 2 figures. Updated a reference. A version of this paper
will appear in the proceedings of GSI2017, Geometric Science of Information,
November 7th to 9th, Paris (France
- âŠ