168 research outputs found

    The self on the page: Using student teachers\u27 written stories as a reflective tool during the student teaching internship

    Get PDF
    Current traditional reflective practices in teacher preparation may be failing to address the needs of teacher candidates in terms of their identity formation as teachers. This qualitative study, utilizing a participant group of six graduate students in their student teaching internships at a small public liberal arts university, explored whether writing stories could enable student teachers to make better sense of their internship experiences and develop understanding of who they are as teachers. After an initial training session on story, data were collected at three key points during the student teacher internship. This data consisted of participants\u27 written stories, focus group discussions, and individual exit interviews. The data were then systematically coded using grounded theory methodology. The six themes resulting from this study indicate support for written stories as an alternative or parallel reflective tool to traditional journaling in teacher preparation

    Divergent response of low‐ versus high‐threshold motor units to experimental muscle pain:dfferential motor unit behavior during pain

    Get PDF
    Key points: The neural strategies behind the control of force during muscle pain are not well understood as previous research has been limited in assessing pain responses only during low-force contractions. Here we compared, for the first time, the behaviour of motor units recruited at low and high forces in response to pain. The results showed that motor units activated at low forces were inhibited while those recruited at higher forces increased their activity in response to pain. When analysing lower- and higher-threshold motor unit behaviour at high forces we observed differential changes in discharge rate and recruitment threshold across the motor unit pool. These adjustments allow the exertion of high forces in acutely painful conditions but could eventually lead to greater fatigue and stress of the muscle tissue. Abstract: During low-force contractions, motor unit discharge rates decrease when muscle pain is induced by injecting nociceptive substances into the muscle. Despite this consistent observation, it is currently unknown how the central nervous system regulates motor unit behaviour in the presence of muscle pain at high forces. For this reason, we analysed the tibialis anterior motor unit behaviour at low and high forces. Surface EMG signals were recorded from 15 healthy participants (mean age (SD) 26 (3) years, six females) using a 64-electrode grid while performing isometric ankle dorsiflexion contractions at 20% and 70% of the maximum voluntary force (MVC). Signals were decomposed and the same motor units were tracked across painful (intramuscular hypertonic saline injection) and non-painful (baseline, isotonic saline, post-pain) contractions. At 20% MVC, discharge rates decreased significantly in the painful condition (baseline vs. pain: 12.7 (1.1) Hz to 11.5 (0.9) Hz, P < 0.001). Conversely, at 70% MVC, discharge rates increased significantly during pain (baseline vs. pain: 19.7 (2.8) Hz to 21.3 (3.5) Hz, p = 0.029) and recruitment thresholds decreased (baseline vs. pain: 59.0 (3.9) %MVC to 55.9 (3.2) %MVC, p = 0.02). These results show that there is a differential adjustment between low- and high-threshold motor units during painful conditions. An increase in excitatory drive to high-threshold motor units is likely required to compensate for the inhibitory influence of nociceptive afferent inputs on low-threshold motor units. These differential mechanisms allow the force output to be maintained during acute pain but this strategy could lead to increased muscle fatigue and symptom aggravation in the long term

    The effect of short-term endurance and strength training on motor unit conduction velocity

    Get PDF
    AIM: The aim of this study was to investigate the effect of strength and endurance training on the conduction velocity of vastus medialis obliquus and lateralis single motor units during voluntary sustained knee extensions. METHODS: Seventeen sedentary healthy men (age, mean ± SD, 26.3 ± 3.9 yr) were randomly assigned to one of 2 groups: strength training (ST, n= 8) or endurance training (ET, n= 9). Conventional endurance and strength training was performed three days per week, over a period of 6 weeks. Motor unit conduction velocity (MUCV), maximum voluntary force (MVC) and time-to-task failure at 30% MVC of the knee extensors were measured before and immediately following training. To assess MUCV, multi-channel surface and intramuscular EMG signals were concurrently recorded from the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during 60-s isometric knee extensions at 10% and 30% of MVC. RESULTS: After 6 weeks of training, MVC increased in the ST group (16.7 ± 7.4 %; P < 0.05) whereas time to task failure was prolonged in the ET group (33.3 ± 14.2 %; P < 0.05). Both training programs induced an increase in motor unit conduction velocity at both 10% and 30% MVC (P < 0.01). Furthermore after both training programs, the reduction in MUCV over time during the sustained contractions occurred at slower rates compared to baseline (P < 0.01). CONCLUSION: These results indicate that short-term endurance and strength training induce similar alterations of the electrophysiological membrane properties of the muscle fiber and in their changes during sustained contractionsGrant SFRH/BD/31796/2006 from Fundação para a Ciência e a Tecnologia (FCT) of Portuga

    Adjustments in motor unit properties during fatiguing contractions after training

    Get PDF
    The objective of the study was to investigate the effect of strength and endurance training on muscle fiber membrane properties and discharge rates of low-threshold motor units of the vasti muscles during fatiguing contractions. Methods: Twenty-five sedentary healthy men (age (mean T SD) = 26.3 T 3.9 yr) were randomly assigned to one of three groups: strength training, endurance training, or a control group. Conventional endurance and strength training was performed 3 dIwkj1, during a period of 6 wk. Motor unit conduction velocity and EMG amplitude of the vastus medialis obliquus and lateralis muscles and biceps femoris were measured during sustained isometric knee extensions at 10% and 30% of the maximum voluntary contraction before and immediately after training. Results: After 6 wk of training, the reduction in motor unit conduction velocity during the sustained contractions at 30% of the maximum voluntary force occurred at slower rates compared with baseline (P G 0.05). However, the rate of decrease was lower after endurance training compared with strength training (P G 0.01). For all groups, motor unit discharge rates declined during the sustained contraction (P G 0.001), and their trend was not altered by training. In addition, the biceps femoris–vasti coactivation ratio declined after the endurance training. Conclusions: Short-term strength and endurance training induces alterations of the electrophysiological membrane properties of the muscle fiber. In particular, endurance training lowers the rate of decline of motor unit conduction velocity during sustained contractions more than strength trainin

    Changes in H reflex and V wave following short-term endurance and strength training

    Get PDF
    This study examined the effects of 3 wk of either endurance or strength training on plasticity of the neural mechanisms involved in the soleus H reflex and V wave. Twenty-five sedentary healthy subjects were randomized into an endurance group (n 13) or strength group (n 12). Evoked V-wave, H-reflex, and M-wave recruitment curves, maximal voluntary contraction (MVC), and time-to-task-failure (isometric contraction at 40% MVC) of the plantar flexors were recorded before and after training. Following strength training, MVC of the plantar flexors increased by 14.4 5.2% in the strength group (P 0.001), whereas time-to-task-failure was prolonged in the endurance group (22.7 17.1%; P 0.05). The V wave-to-maximal M wave (V/Mmax) ratio increased significantly (55.1 28.3%; P 0.001) following strength training, but the maximal H wave-to-maximal M wave (Hmax/Mmax) ratio remained unchanged. Conversely, in the endurance group the V/Mmax ratio was not altered, whereas the Hmax/Mmax ratio increased by 30.8 21.7% (P 0.05). The endurance training group also displayed a reduction in the H-reflex excitability threshold while the H-reflex amplitude on the ascending limb of the recruitment curve increased. Strength training only elicited a significant decrease in H-reflex excitability threshold, while H-reflex amplitudes over the ascending limb remained unchanged. These observations indicate that the H-reflex pathway is strongly involved in the enhanced endurance resistance that occurs following endurance training. On the contrary, the improvements in MVC following strength training are likely attributed to increased descending drive and/or modulation in afferents other than Ia afferents

    Motor unit conduction velocity during sustained contraction after eccentric exercise

    Get PDF
    BACKGROUND:Eccentric contractions induce muscle fiber damage that is associated with a decreased capacity to generate voluntary force and increased fiber membrane permeability. Changes in fiber membrane permeability results in cell depolarization that is expected to have an effect on the action potential propagation velocity of the muscle fibers. PURPOSE:The aim of the study was to investigate the action potential propagation velocity in individual motor units before and 24 and 48 h after eccentric exercise. METHODS:Multichannel surface and fine-wire intramuscular EMG signals were concurrently recorded from two locations of the right vastus medialis muscle of 10 healthy men during 60-s isometric contractions at 10% and 30% of the maximal force. RESULTS:The maximal force decreased by 26.1 ± 16.1% (P < 0.0001) at 24 h and remained reduced by 23.6 ± 14.5% (P < 0.0001) 48 h after exercise with respect to baseline. With respect to baseline, motor unit conduction velocity decreased (P < 0.05) by (average over 24 and 48 h after exercise) 7.7 ± 2.7% (10% maximal voluntary contraction (MVC), proximal), 7.2 ± 2.8% (10% MVC, distal), 8.6 ± 3.8% (30% MVC, proximal), and 6.2 ± 1.5% (30% MVC, distal). Moreover, motor unit conduction velocity decreased over time during the sustained contractions at faster rates when assessed 24 and 48 h after exercise with respect to baseline for both contraction forces and locations (P < 0.05). CONCLUSIONS:These results indicate that the electrophysiological membrane properties of muscle fibers are altered by exercise-induced muscle fiber damage.Ministry of Science, Research and Technology of Iran (N.H.) and the Danish Technical Research Council (project: Centre for Neuroengineering (CEN), contract no. 26-04-0100) (D.F.)

    Surface EMG amplitude does not identify differences in neural drive to synergistic muscles

    Get PDF
    Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50 and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL (p<0.001) while the EMG amplitude normalized with respect to MVC was greater for VL than VM (p<0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL (p<0.001) and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials

    The role of motor learning and neuroplasticity in designing rehabilitation approaches for musculoskeletal pain disorders

    Get PDF
    a b s t r a c t The extent of cortical neuroplastic changes has been shown to be a key neurophysiological feature that correlates with the level of functional recovery. Therefore, rehabilitation efforts that attempt to maximize cortical reorganization provide the greatest potential for rehabilitation success. This paper reviews the evidence of cortical neuroplastic changes that have been shown to occur in association with experimental or chronic pain disorders. Further, the promising role of novel motor-skill training is discussed in order to best direct the clinician to optimize rehabilitation strategies for patients with musculoskeletal pain disorders

    Fat Body Mass and Vertebral Fracture Progression in Women With Breast Cancer

    Get PDF
    Importance Women with early breast cancer (EBC) exposed to aromatase inhibitors (AIs) may experience fragility fractures despite treatment with bone-active drugs. Risk factors for fractures in patients receiving AIs and denosumab have not been explored to date.Objectives To evaluate whether an association exists between dual x-ray absorptiometry (DXA)-measured fat body mass (FBM) and vertebral fracture (VF) progression in postmenopausal women with EBC undergoing adjuvant therapy with AIs in combination with denosumab and to examine whether VF was associated with common risk factors for bone fracture and parameters of body composition other than FBM.Design, Setting, and Participants For this prospective, single-center, cohort study, 237 patients with EBC who were undergoing adjuvant treatment with AIs and denosumab (60 mg every 6 months) were enrolled at the Breast Unit of the ASST Spedali Civili of Brescia from September 2014 to June 2018. Data analysis was conducted in June 2022.Exposure Body composition parameters, bone mineral density, and morphometric VFs were assessed by DXA at study entry and after 18 months of therapy.Main Outcomes and MeasuresVF progression, defined as either new or worsening of preexisting VFs, between the 2 time points.Results Of the 237 patients enrolled (median [range] age, 61 [28-84] years), 17 (4.4%) reported VF progression. Univariable analysis found an association between VF progression and a history of clinical fractures (odds ratio [OR], 3.22; 95% CI, 1.19-8.74; P = .02), Fracture Risk Assessment Tool (FRAX) score for major fractures (OR, 4.42; 95% CI, 1.23-13.79; P = .04), percentage of FBM (OR, 6.04; 95% CI, 1.69-21.63; P = .006), and android fat (OR, 9.58; 95% CI, 1.17-78.21; P = .04) and an inverse association with appendicular lean mass index-FBM ratio (OR, 0.25, 95% CI, 0.08-0.82; P = .02). Multivariable analysis revealed percentage of FBM (OR, 5.41; 95% CI, 1.49-19.59; P = .01) and FRAX score (OR, 3.95; 95% CI, 1.09-14.39; P = .04) as independent variables associated with VF progression.Conclusions and Relevance The findings of this study suggest that baseline FBM is an independent factor for VF progression in patients with EBC treated with adjuvant AIs and denosumab. This observation is new and indicates that diet and exercise may synergize with denosumab in the management of bone health in this patient setting
    corecore