100 research outputs found

    Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study.

    Get PDF
    BACKGROUND: Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial. METHODS: Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes. RESULTS: During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes. CONCLUSION: PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum. TRIAL REGISTRATION: ClinicalTrials.gov NCT00666380

    Cytogenetic variation of repetitive DNA elements in Hoplias malabaricus (Characiformes - Erythrinidae) from white, black and clear water rivers of the Amazon basin

    Full text link
    Abstract Hoplias malabaricus is a common fish species occurring in white, black and clear water rivers of the Amazon basin. Its large distribution across distinct aquatic environments can pose stressful conditions for dispersal and creates possibilities for the emergence of local adaptive profiles. We investigated the chromosomal localization of repetitive DNA markers (constitutive heterochromatin, rDNA and the transposable element REX-3) in populations from the Amazonas river (white water), the Negro river (black water) and the Tapajós river (clear water), in order to address the variation/association of cytogenomic features and environmental conditions. We found a conserved karyotypic macrostructure with a diploid number of 40 chromosomes (20 metacentrics + 20 submetacentrics) in all the samples. Heteromorphism in pair 14 was detected as evidence for the initial differentiation of an XX/XY system. Minor differences detected in the amount of repetitive DNA markers are interpreted as possible signatures of local adaptations to distinct aquatic environments

    Role and task allocation framework for Multi-Robot Collaboration with latent knowledge estimation

    Get PDF
    In this work a novel framework for modeling role and task allocation in Cooperative Heterogeneous Multi-Robot Systems (CHMRSs) is presented. This framework encodes a CHMRS as a set of multidimensional relational structures (MDRSs). This set of structure defines collaborative tasks through both temporal and spatial relations between processes of heterogeneous robots. These relations are enriched with tensors which allow for geometrical reasoning about collaborative tasks. A learning schema is also proposed in order to derive the components of each MDRS. According to this schema, the components are learnt from data reporting the situated history of the processes executed by the team of robots. Data are organized as a multirobot collaboration treebank (MRCT) in order to support learning. Moreover, a generative approach, based on a probabilistic model, is combined together with nonnegative tensor decomposition (NTD) for both building the tensors and estimating latent knowledge. Preliminary evaluation of the performance of this framework is performed in simulation with three heterogeneous robots, namely, two Unmanned Ground Vehicles (UGVs) and one Unmanned Aerial Vehicle (UAV)

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively
    • …
    corecore