4,900 research outputs found
Interband polarized absorption in InP polytypic superlattices
Recent advances in growth techniques have allowed the fabrication of
semiconductor nanostructures with mixed wurtzite/zinc-blende crystal phases.
Although the optical characterization of these polytypic structures is well
eported in the literature, a deeper theoretical understanding of how crystal
phase mixing and quantum confinement change the output linear light
polarization is still needed. In this paper, we theoretically investigate the
mixing effects of wurtzite and zinc-blende phases on the interband absorption
and in the degree of light polarization of an InP polytypic superlattice. We
use a single 88 kp Hamiltonian that describes both crystal
phases. Quantum confinement is investigated by changing the size of the
polytypic unit cell. We also include the optical confinement effect due to the
dielectric mismatch between the superlattice and the vaccum and we show it to
be necessary to match experimental results. Our calculations for large wurtzite
concentrations and small quantum confinement explain the optical trends of
recent photoluminescence excitation measurements. Furthermore, we find a high
sensitivity to zinc-blende concentrations in the degree of linear polarization.
This sensitivity can be reduced by increasing quantum confinement. In
conclusion, our theoretical analysis provides an explanation for optical trends
in InP polytypic superlattices, and shows that the interplay of crystal phase
mixing and quantum confinement is an area worth exploring for light
polarization engineering.Comment: 9 pages, 6 figures and 1 tabl
Existence criteria for stabilization from the scaling behaviour of ionization probabilities
We provide a systematic derivation of the scaling behaviour of various
quantities and establish in particular the scale invariance of the ionization
probability. We discuss the gauge invariance of the scaling properties and the
manner in which they can be exploited as consistency check in explicit
analytical expressions, in perturbation theory, in the Kramers-Henneberger and
Floquet approximation, in upper and lower bound estimates and fully numerical
solutions of the time dependent Schroedinger equation. The scaling invariance
leads to a differential equation which has to be satisfied by the ionization
probability and which yields an alternative criterium for the existence of
atomic bound state stabilization.Comment: 12 pages of Latex, one figur
The quantum brachistochrone problem for non-Hermitian Hamiltonians
Recently Bender, Brody, Jones and Meister found that in the quantum brachistochrone problem the passage time needed for the evolution of certain initial states into specified final states can be made arbitrarily small, when the time-evolution operator is taken to be non-Hermitian but PT-symmetric. Here we demonstrate that such phenomena can also be obtained for non-Hermitian Hamiltonians for which PT-symmetry is completely broken, i.e. dissipative systems. We observe that the effect of a tunable passage time can be achieved by projecting between orthogonal eigenstates by means of a time-evolution operator associated with a non-Hermitian Hamiltonian. It is not essential that this Hamiltonian is PT-symmetric
Constraining planet structure and composition from stellar chemistry: trends in different stellar populations
The chemical composition of stars that have orbiting planets provides
important clues about the frequency, architecture, and composition of exoplanet
systems. We explore the possibility that stars from different galactic
populations that have different intrinsic abundance ratios may produce planets
with a different overall composition. We compiled abundances for Fe, O, C, Mg,
and Si in a large sample of solar neighbourhood stars that belong to different
galactic populations. We then used a simple stoichiometric model to predict the
expected iron-to-silicate mass fraction and water mass fraction of the planet
building blocks, as well as the summed mass percentage of all heavy elements in
the disc. Assuming that overall the chemical composition of the planet building
blocks will be reflected in the composition of the formed planets, we show that
according to our model, discs around stars from different galactic populations,
as well as around stars from different regions in the Galaxy, are expected to
form rocky planets with significantly different iron-to-silicate mass
fractions. The available water mass fraction also changes significantly from
one galactic population to another. The results may be used to set constraints
for models of planet formation and chemical composition. Furthermore, the
results may have impact on our understanding of the frequency of planets in the
Galaxy, as well as on the existence of conditions for habitability.Comment: Accepted for publication in Astronomy & Astrophysic
Transformação e avaliação de plantas a resistência ao mofo branco do feijoeiro causado pelo fungo Sclerotinia sclerotiorum (Lib.) de Bary.
Como não existe alta resistência genética a doença do mofo branco causado pelo patógeno habitante do solo Sclerotinia sclerotiorum, a proposta é a transformação do feijão com o gene da oxalato descarboxilase, a fim de interferir diretamente nos mecanismos de patogenicidade do fungo, tornando a planta resistente
Resonant enhancements of high-order harmonic generation
Solving the one-dimensional time-dependent Schr\"odinger equation for simple
model potentials, we investigate resonance-enhanced high-order harmonic
generation, with emphasis on the physical mechanism of the enhancement. By
truncating a long-range potential, we investigate the significance of the
long-range tail, the Rydberg series, and the existence of highly excited states
for the enhancements in question. We conclude that the channel closings typical
of a short-range or zero-range potential are capable of generating essentially
the same effects.Comment: 7 pages revtex, 4 figures (ps files
Abundance trend with condensation temperature for stars with different Galactic birth places
During the past decade, several studies reported a correlation between
chemical abundances of stars and condensation temperature (also known as Tc
trend). However, the real astrophysical nature of this correlation is still
debated. The main goal of this work is to explore the possible dependence of
the Tc trend on stellar Galactocentric distances, Rmean. We used high-quality
spectra of about 40 stars observed with the HARPS and UVES spectrographs to
derive precise stellar parameters, chemical abundances, and stellar ages. A
differential line-by-line analysis was applied to achieve the highest possible
precision in the chemical abundances. We confirm previous results that [X/Fe]
abundance ratios depend on stellar age and that for a given age, some elements
also show a dependence on Rmean. When using the whole sample of stars, we
observe a weak hint that the Tc trend depends on Rmean. The observed dependence
is very complex and disappears when only stars with similar ages are
considered. To conclude on the possible dependence of the Tc trend on the
formation place of stars, a larger sample of stars with very similar
atmospheric parameters and stellar ages observed at different Galactocentric
distances is neededComment: Accepted by A&
Gene flow from transgenic common beans expressing the bar gene.
Gene flow is a common phenomenon even in self-pollinated plant species. With the advent of genetically modified plants this subject has become of the utmost importance due to the need for controlling the spread of transgenes. This study was conducted to determine the occurrence and intensity of outcrossing in transgenic common beans. In order to evaluate the outcross rates, four experiments were conducted in Santo Antonio de Goiás (GO, Brazil) and one in Londrina (PR, Brazil), using transgenic cultivars resistant to the herbicide glufosinate ammonium and their conventional counterparts as recipients of the transgene. Experiments with cv. Olathe pinto and the transgenic line Olathe M1/4 were conducted in a completely randomized design with ten replications for three years in one location, whereas the experiments with cv. Pérola and the transgenic line Pérola M1/4 were conducted at two locations for one year, with the transgenic cultivar surrounded on all sides by the conventional counterpart. The outcross occurred at a negligible rate of 0.00741% in cv. Pérola, while none was observed (0.0%) in cv. Olathe pinto. The frequency of gene flow was cultivar dependent and most of the observed outcross was within 2.5 m from the edge of the pollen source
Non-Hermitian Hamiltonians with real eigenvalues coupled to electric fields: from the time-independent to the time dependent quantum mechanical formulation
We provide a reviewlike introduction into the quantum mechanical formalism
related to non-Hermitian Hamiltonian systems with real eigenvalues. Starting
with the time-independent framework we explain how to determine an appropriate
domain of a non-Hermitian Hamiltonian and pay particular attention to the role
played by PT-symmetry and pseudo-Hermiticity. We discuss the time-evolution of
such systems having in particular the question in mind of how to couple
consistently an electric field to pseudo-Hermitian Hamiltonians. We illustrate
the general formalism with three explicit examples: i) the generalized Swanson
Hamiltonians, which constitute non-Hermitian extensions of anharmonic
oscillators, ii) the spiked harmonic oscillator, which exhibits explicit
supersymmetry and iii) the -x^4-potential, which serves as a toy model for the
quantum field theoretical phi^4-theory.Comment: 14 pages, 3 figures, to appear in Laser Physics, minor typos
correcte
- …