5 research outputs found

    Physiological and biochemical changes during the loss of desiccation tolerance in germinating Adenanthera pavonina L. seeds

    No full text
    ABSTRACT We investigated the loss of desiccation tolerance (DT) in Adenanthera pavonina seeds during germination. Seeds were subjected to imbibition for 0, 24, 36, 48, 60 and 81 h, then dried to their initial moisture content (13%), rehydrated and evaluated for survival (resumption of growth and development of normal seedlings) and membrane system integrity (electrolyte leakage). Embryonic axes of seeds subjected only to imbibition during the same early time periods were used to investigate the electrophoretic patterns of heat-stable proteins and the relative nuclear DNA content. In A. pavonina seeds, DT remained unchanged until 36 h of imbibition (resulting in germination and 82% normal seedlings), after which it was progressively lost, and seeds with a protruded radicle length of 1 mm did not withstand dehydration. The loss of desiccation tolerance could not be related to either membrane damage caused by drying or the resumption of the cell cycle during germination. However, the decrease in heat-stable protein contents observed throughout germination may be related to the loss of DT in A. pavonina seeds

    Potentiation Of High Hydrostatic Pressure Inactivation Of Mycobacterium By Combination With Physical And Chemical Conditions

    No full text
    Mycobacterium abscessus is an important hospital-acquired pathogen involved in infections associated with medical, surgical, and biopharmaceutical materials. In this work, we investigated the pressure-induced inactivation of two strains [2544 and American Type Culture Collection (ATCC) 19977] of M. abscessus in combination with different temperatures and pH conditions. For strain 2544, exposure to 250 MPa for 90 min did not significantly inactivate the bacteria at 20 C, whereas at -15 C, there was complete inactivation. Exposure to 250 MPa at ≄60 C caused rapid inactivation, with no viable bacteria after 45 min. With 45 min of exposure, there were no viable bacteria at any temperature when a higher pressure (350 MPa) was used. Extremes of pH (4 or 9) also markedly enhanced the pressure-induced inactivation of bacteria at 250 MPa, with complete inactivation after 45 min. In comparison, exposure of this strain to the disinfecting agent glutaraldehyde (0.5 %) resulted in total inactivation within 5 min. Strain 19977 was more sensitive to high pressure but less sensitive to glutaraldehyde than strain 2544. These results indicate that high hydrostatic pressure in combination with other physical parameters may be useful in reducing the mycobacterial contamination of medical materials and pharmaceuticals that are sensitive to autoclaving. © 2013 Springer-Verlag Berlin Heidelberg.971674177425Bello, T., Rivera-Olivero, I.A., De Waard, J.H., Inactivation of mycobacteria by disinfectants with a tuberculocidal label (2006) Enfermedades Infecciosas y Microbiologia Clinica, 24 (5), pp. 319-321Bigata, X., Ribera, M., Bielsa, I., Ferrandiz, C., Adverse granulomatous reaction after cosmetic dermal silicone injection (2001) Dermatologic Surgery, 27 (2), pp. 198-200. , DOI 10.1046/j.1524-4725.2001.00020.xBispo, J.A.C., Santos, J.L.R., Landini, G.F., Goncalves, J.M., Bonafe, C.F.S., PH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure (2007) Biophysical Chemistry, 125 (2-3), pp. 341-349. , DOI 10.1016/j.bpc.2006.09.009, PII S0301462206002742Bonafe, C.F.S., Glaser, M., Voss, E.W., Weber, G., Silva, J.L., Virus inactivation by anilinonaphthalene sulfonate compounds and comparison with other ligands (2000) Biochem Biophys Res Commun, 275, pp. 955-961. , 10.1006/bbrc.2000.3402 10973827 10.1006/bbrc.2000.3402 1:CAS:528:DC%2BD3cXmtFGltr8%3DBonafe, C.F.S., Vital, C.M.R., Telles, R.C.B., Goncalves, M.C., Matsuura, M.S.A., Pessine, F.B.T., Freitas, D.R.C., Vega, J., Tobacco mosaic virus disassembly by high hydrostatic pressure in combination with urea and low temperature (1998) Biochemistry, 37 (31), pp. 11097-11105. , DOI 10.1021/bi980349n, PII S0006296098003493Brown-Elliott, B.A., Wallace Jr., R.J., Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria (2002) Clinical Microbiology Reviews, 15 (4), pp. 716-746. , DOI 10.1128/CMR.15.4.716-746.2002Cooke, R.P.D., Goddard, S.V., Whymant-Morris, A., Sherwood, J., Chatterly, R., An evaluation of Cidex OPA (0.55% ortho-phthalaldehyde) as an alternative to 2% glutaraldehyde for high-level disinfection of endoscopes (2003) Journal of Hospital Infection, 54 (3), pp. 226-231. , DOI 10.1016/S0195-6701(03)00040-9, PII S0195670103000409Duraes-Carvalho, R., Souza, A.R., Martins, L.M., Sprogis, A.C., Bispo, J.A.C., Bonafe, C.F.S., Yano, T., Effect of high hydrostatic pressure on Aeromonas hydrophila AH 191 growth in milk (2012) J Food Sci, 77, pp. 417-M424. , 10.1111/j.1750-3841.2012.02819.x 22860590 10.1111/j.1750-3841.2012.02819. x 1:CAS:528:DC%2BC38XhsFKku7bKFonberg-Broczek, M., Windyga, B., Szczawinski, J., Szczawinska, M., Pietrzak, D., Prestamo, G., High pressure processing for food safety (2005) Acta Biochimica Polonica, 52 (3), pp. 721-724Fox, L.P., Geyer, A.S., Husain, S., Della-Latta, P., Grossman, M.E., Mycobacterium abscessus cellulitis and multifocal abscesses of the breasts in a transsexual from illicit intramammary injections of silicone (2004) Journal of the American Academy of Dermatology, 50 (3), pp. 450-454. , DOI 10.1016/j.jaad.2003.09.008Gorman, S.P., Scott, E.M., Russell, A.D., Antimicrobial activity, uses and mechanism of action of glutaraldehyde (1980) Journal of Applied Bacteriology, 48 (2), pp. 161-190Griffith, D.E., Emergence of nontuberculous mycobacteria as pathogens in cystic fibrosis (2003) American Journal of Respiratory and Critical Care Medicine, 167 (6), pp. 810-812. , DOI 10.1164/rccm.2301001Hashizume, C., Kimura, K., Hayashi, R., Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures (1995) Biosci Biotechnol Biochem, 59, pp. 1455-1458. , 7549097 10.1271/bbb.59.1455 1:CAS:528:DyaK2MXnvFKnu7w%3DKatoch, V.M., Infections due to non-tuberculous mycobacteria (NTM) (2004) Indian Journal of Medical Research, 120 (4), pp. 290-304Le Dantec, C., Duguet, J.-P., Montiel, A., Dumoutier, N., Dubrou, S., Vincent, V., Occurrence of mycobacteria in water treatment lines and in water distribution systems (2002) Applied and Environmental Microbiology, 68 (11), pp. 5318-5325Mackey, B.M., Forestiere, K., Isaacs, N.S., Stenning, R., Brooker, B., The effect of high hydrostatic pressure on Salmonella thompson and Listeria monocytogenes examined by electron microscopy (1994) Letters in Applied Microbiology, 19 (6), pp. 429-432Masson, P., Tonello, C., Balny, C., High-pressure biotechnology in medicine and pharmaceutical science (2001) Journal of Biomedicine and Biotechnology, 2001 (2), pp. 85-88. , DOI 10.1155/S1110724301000158, PII S1110724301000158McGaw, L.J., Lall, N., Hlokwe, T.M., Michel, A.L., Meyer, J.J.M., Eloff, J.N., Purified compounds and extracts from Euclea species with antimycobacterial activity against Mycobacterium bovis and fast-growing mycobacteria (2008) Biological and Pharmaceutical Bulletin, 31 (7), pp. 1429-1433. , http://www.jstage.jst.go.jp/article/bpb/31/7/1429/_pdf, DOI 10.1248/bpb.31.1429Medjahed, H., Gaillard, J.L., Reyrat, J.M., Mycobacterium abscessus: A new player in the mycobacterial field (2010) Trends Microbiol, 18, pp. 117-123. , 10.1016/j.tim.2009.12.007 20060723 10.1016/j.tim.2009.12.007 1:CAS:528:DC%2BC3cXjtVCksbk%3DMolina-Gutierrez, A., Stippl, V., Delgado, A., Ganzle, M.G., Vogel, R.F., In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment (2002) Applied and Environmental Microbiology, 68 (9), pp. 4399-4406. , DOI 10.1128/AEM.68.9.4399-4406.2002Moussa, M., Perrier-Cornet, J.M., Gervais, P., Synergistic and antagonistic effects of combined subzero temperature and high pressure on inactivation of Escherichia coli (2006) Appl Environ Microbiol, 72, pp. 150-156. , 10.1128/Aem.72.1.150-156.2006 16391037 10.1128/AEM.72.1.150-156.2006 1:CAS:528:DC%2BD28XmtFamsA%3D%3DMurillo, J., Torres, M., Bofill, L., Rios-Fabra, A., Irausquin, E., Isturiz, R., Guzman, M., Cordido, M., Skin and wound infection by rapidly growing mycobacteria. An unexpected complication of liposuction and liposculpture (2000) Arch Dermatol, 136, pp. 1347-1352. , 11074697 10.1001/archderm.136.11.1347 1:STN:280:DC%2BD3M%2FjtlCjtA%3D%3DNeuman, R.C., Kauzmann, W., Zipp, A., Pressure dependence of weak acid ionization in aqueous buffers (1973) J Phys Chem, 77, pp. 2687-2691. , 10.1021/j100640a025 1:CAS:528:DyaE3sXlsFSjtbs%3DPetrini, B., Mycobacterium abscessus: An emerging rapid-growing potential pathogen (2006) APMIS, 114 (5), pp. 319-328. , DOI 10.1111/j.1600-0463.2006.apm-390.xPonce, E., Pla, R., Sendra, E., Guamis, B., Mor-Mur, M., Destruction of Salmonella enteritidis inoculated in liquid whole egg by high hydrostatic pressure: Comparative study in selective and non-selective media (1999) Food Microbiology, 16 (4), pp. 357-365. , DOI 10.1006/fmic.1998.0248Portaels, F., Pattyn, S.R., Growth of mycobacteria in relation to the pH of the medium (1982) Annales de Microbiologie, B133 (2), pp. 213-221Rikimaru, T., Kondo, M., Kondo, S., Oizumi, K., Efficacy of common antiseptics against mycobacteria (2000) International Journal of Tuberculosis and Lung Disease, 4 (6), pp. 570-576Ripoll, F., Pasek, S., Schenowitz, C., Dossat, C., Barbe, V., Rottman, M., Macheras, E., Gaillard, J.L., Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus (2009) PLoS One, 4, p. 5660. , 10.1371/Journal.Pone.0005660 19543527 10.1371/journal.pone.0005660Ritz, M., Tholozan, J.L., Federighi, M., Pilet, M.F., Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure (2002) International Journal of Food Microbiology, 79 (1-2), pp. 47-53. , DOI 10.1016/S0168-1605(02)00178-2, PII S0168160502001782Rivalain, N., Roquain, J., Demazeau, G., Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in biotechnologies (2010) Biotechnol Adv, 28, pp. 659-672. , 10.1016/j.biotechadv.2010.04.001 20398747 10.1016/j.biotechadv.2010.04. 001 1:CAS:528:DC%2BC3cXht1Wltr7LRutala, W.A., Cole, E.C., Wannamaker, N.S., Weber, D.J., Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants (1991) Am J Med, 91, pp. 267S-271S. , 1928175 10.1016/0002-9343(91)90380-G 1:STN:280:DyaK38%2Fis1Wqsg%3D%3DRutala, W.A., Gergen, M.F., Weber, D.J., Comparative evaluation of the sporicidal activity of new low- temperature sterilization technologies: Ethylene oxide, 2 plasma sterilization systems, and liquid peracetic acid (1998) American Journal of Infection Control, 26 (4), pp. 393-398Sale, A.J., Gould, G.W., Hamilton, W.A., Inactivation of bacterial spores by hydrostatic pressure (1970) J Gen Microbiol, 60, pp. 323-334. , 4922567 10.1099/00221287-60-3-323 1:STN:280:DyaE3M%2FlvVyisQ%3D%3DSantos, J.L.R., Aparicio, R., Joekes, I., Silva, J.L., Bispo, J.A.C., Bonafe, C.F.S., Different urea stoichiometries between the dissociation and denaturation of tobacco mosaic virus as probed by hydrostatic pressure (2008) Biophys Chem, 134, pp. 214-224. , 10.1016/j.bipc.2008.02.010 18367310 10.1016/j.bpc.2008.02.010 1:CAS:528:DC%2BD1cXksVahtbc%3DSantos, J.L.R., Bispo, J.A.C., Landini, G.F., Bonafe, C.F.S., Proton dependence of tobacco mosaic virus dissociation by pressure (2004) Biophysical Chemistry, 111 (1), pp. 53-61. , DOI 10.1016/j.bpc.2004.04.003, PII S0301462204001139Silva, J.L., Villas-Boas, M., Bonafe, C.F.S., Meirelles, N.C., Anomalous pressure dissociation of large protein aggregates. Lack of concentration dependence and irreversibility at extreme degrees of dissociation of extracellular hemoglobin (1989) Journal of Biological Chemistry, 264 (27), pp. 15863-15868Sohn, H., Kim, H.J., Kim, J.M., Kwon, O.J., Koh, W.J., Shin, S.J., High virulent clinical isolates of Mycobacterium abscessus from patients with the upper lobe fibrocavitary form of pulmonary disease (2009) Microb Pathog, 47, pp. 321-328. , 10.1016/j.micpath.2009.09.010 19800962 10.1016/j.micpath.2009.09.010 1:CAS:528:DC%2BD1MXhsVaks7vPSpilimbergo, S., Elvassore, N., Bertucco, A., Microbial inactivation by high-pressure (2002) J Supercrit Fluids, 22, pp. 55-63. , 10.1016/S0896-8446(01)00106-1 1:CAS:528:DC%2BD3MXpt1aitrg%3DStewart, C.M., Jewett, F.F., Dunne, C.P., Hoover, D.G., Effect of concurrent high hydrostatic pressure, acidity and heat on the injury and destruction of Listeria monocytogenes (1997) Journal of Food Safety, 17 (1), pp. 23-36Sugimoto, H., Ito, M., Hatano, M., Nakanishi, Y., Maruyama, Y., Yoshizaki, T., A case of chronic otitis media caused by Mycobacterium abscessus (2010) Auris Nasus Larynx, 37, pp. 636-639. , 10.1016/j.anl.2010.01.010 20206453 10.1016/j.anl.2010.01.010Takahashi, K., Sterilization of microorganisms by hydrostatic pressure at low temperature (1992) High Press Biotecnol, 224, pp. 303-307Tholozan, J.-L., Ritz, M., Jugiau, F., Federighi, M., Tissier, J.P., Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella typhimurium (2000) Journal of Applied Microbiology, 88 (2), pp. 202-212. , DOI 10.1046/j.1365-2672.2000.00917.
    corecore