42 research outputs found

    Novel intravesical therapeutics in the treatment of non-muscle invasive bladder cancer: Horizon scanning

    Get PDF
    IntroductionNon-muscle-invasive bladder cancer (NMIBC) is a common and heterogeneous disease; many patients develop recurrent or progress to muscle-invasive disease. Intravesical drug therapy is a pillar in the current management of NMIBC; notwithstanding, Mitomycin C (MMC) and Bacillus Calmette-Guérin (BCG) have numerous limitations including international supply issues, and local and systemic toxicity. Here we review novel intravesical therapeutic options and drug delivery devices with potential for clinical use in the treatment of NMIBC.MethodsPubMed, ClinicalTrials.gov and Cochrane Library searches were undertaken. Systematic reviews, meta-analyses, randomised controlled trials, single-arm clinical trials and national/international conference proceedings were included.ResultsNovel intravesical drugs, including chemotherapeutic agents, immune checkpoint inhibitors, monoclonal antibodies and gene therapies, have demonstrated varying efficacy in the treatment of NMIBC. Current evidence for the majority of treatments is mostly limited to single-arm trials in patients with recurrent NMIBC. Various novel methods of drug delivery have also been investigated, with encouraging preliminary results supporting the intravesical delivery of hyperthermic MMC and MMC hydrogel formulations.ConclusionsNovel therapeutic agents and drug delivery systems will be important in the future intravesical management of NMIBC. As our understanding of the molecular diversity of NMIBC develops, molecular subtyping will become fundamental in the personalisation of intravesical treatments. Further randomised studies are urgently required to investigate the efficacy of novel intravesical treatments and novel regimens, in comparison to current standards-of-care, particularly in the context of international BCG shortages

    Combined bezafibrate, medroxyprogesterone acetate and valproic acid treatment inhibits osteosarcoma cell growth without adversely affecting normal mesenchymal stem cells.

    Get PDF
    This document is the Accepted Manuscript version of a published work that appeared in final form in Bioscience Reports. To access the final edited and published work see http://dx.doi.org/10.1042/BSR20202505Drug repurposing is a cost effective means of targeting new therapies for cancer. We have examined the effects of the repurposed drugs, bezafibrate, medroxyprogesterone acetate and valproic acid on human osteosarcoma cells, i.e., SAOS2 and MG63 compared with their normal cell counterparts, i.e. mesenchymal stem/stromal cells (MSCs). Cell growth, viability and migration were measured by biochemical assay and live cell imaging, whilst levels of lipid-synthesising enzymes were measured by immunoblotting cell extracts. These drug treatments inhibited the growth and survival of SAOS2 and MG63 cells most effectively when used in combination (termed V-BAP). In contrast, V-BAP treated MSCs remained viable with only moderately reduced cell proliferation. V-BAP treatment also inhibited migratory cell phenotypes. MG63 and SAOS2 cells expressed much greater levels of fatty acid synthase and stearoyl CoA desaturase 1 than MSCs, but these elevated enzyme levels significantly decreased in the V-BAP treated osteosarcoma cells prior to cell death. Hence, we have identified a repurposed drug combination that selectively inhibits the growth and survival of human osteosarcoma cells in association with altered lipid metabolism without adversely affecting their non-transformed cell counterparts

    Combined bezafibrate and medroxyprogesterone acetate: potential novel therapy for acute myeloid leukaemia

    Get PDF
    Background: The majority of acute myeloid leukaemia (AML) patients are over sixty years of age. With current treatment regimens, survival rates amongst these, and also those younger patients who relapse, remain dismal and novel therapies are urgently required. In particular, therapies that have anti-leukaemic activity but that, unlike conventional chemotherapy, do not impair normal haemopoiesis. Principal Findings: Here we demonstrate the potent anti-leukaemic activity of the combination of the lipid-regulating drug bezafibrate (BEZ) and the sex hormone medroxyprogesterone acetate (MPA) against AML cell lines and primary AML cells. The combined activity of BEZ and MPA (B/M) converged upon the increased synthesis and reduced metabolism of prostaglandin D2 (PGD2) resulting in elevated levels of the downstream highly bioactive, anti-neoplastic prostaglandin 15-deoxy Δ12,14 PGJ2 (15d-PGJ2). BEZ increased PGD2 synthesis via the generation of reactive oxygen species (ROS) and activation of the lipid peroxidation pathway. MPA directed prostaglandin synthesis towards 15d-PGJ2 by inhibiting the PGD2 11β -ketoreductase activity of the aldo-keto reductase AKR1C3, which metabolises PGD2 to 9α11β-PGF2α. B/M treatment resulted in growth arrest, apoptosis and cell differentiation in both AML cell lines and primary AML cells and these actions were recapitulated by treatment with 15d-PGJ2. Importantly, the actions of B/M had little effect on the survival of normal adult myeloid progenitors. Significance: Collectively our data demonstrate that B/M treatment of AML cells elevated ROS and delivered the anti-neoplastic actions of 15d-PGJ2. These observations provide the mechanistic rationale for the redeployment of B/M in elderly and relapsed AML

    SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention

    Get PDF
    Ribosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes. SDS patients present exocrine pancreatic insufficiency, neutropenia, chronic infections, and skeletal abnormalities. Later in life, patients are prone to myelodisplastic syndrome and acute myeloid leukemia (AML). It is unknown why patients develop AML and which cellular alterations are directly due to the loss of the SBDS protein. Here we derived mouse embryonic fibroblast lines from an SbdsR126T/R126T mouse model. After their immortalization, we reconstituted them by adding wild type Sbds. We then performed a comprehensive analysis of cellular functions including colony formation, translational and transcriptional RNA-seq, stress and drug sensitivity. We show that: 1. Mutant Sbds causes a reduction in cellular clonogenic capability and oncogene-induced transformation. 2. Mutant Sbds causes a marked increase in immature 60S subunits, limited impact on mRNA specific initiation of translation, but reduced global protein synthesis capability. 3. Chronic loss of SBDS activity leads to a rewiring of gene expression with reduced ribosomal capability, but increased lysosomal and catabolic activity. 4. Consistently with the gene signature, we found that SBDS loss causes a reduction in ATP and lactate levels, and increased susceptibility to DNA damage. Combining our data, we conclude that a cell-specific fragile phenotype occurs when SBDS protein drops below a threshold level, and propose a new interpretation of the disease

    Metabolomic Profiling of Drug Responses in Acute Myeloid Leukaemia Cell Lines

    Get PDF
    Combined bezafibrate (BEZ) and medroxyprogesterone acetate (MPA) exert unexpected antileukaemic activities against acute myeloid leukaemia (AML) and these activities are associated with the generation of reactive oxygen species (ROS) within the tumor cells. Although the generation of ROS by these drugs is supported by preceding studies including our own, the interrelationship between the cellular effects of the drugs and ROS generation is not well understood. Here we report the use of NMR metabolomic profiling to further study the effect of BEZ and MPA on three AML cell lines and to shed light on the underlying mechanism of action. For this we focused on drug effects induced during the initial 24 hours of treatment prior to the onset of overt cellular responses and examined these in the context of basal differences in metabolic profiles between the cell lines. Despite their ultimately profound cellular effects, the early changes in metabolic profiles engendered by these drugs were less pronounced than the constitutive metabolic differences between cell types. Nonetheless, drug treatments engendered common metabolic changes, most markedly in the response to the combination of BEZ and MPA. These responses included changes to TCA cycle intermediates consistent with recently identified chemical actions of ROS. Notable amongst these was the conversion of α-ketoglutarate to succinate which was recapitulated by the treatment of cell extracts with exogenous hydrogen peroxide. These findings indicate that the actions of combined BEZ and MPA against AML cells are indeed mediated downstream of the generation of ROS rather than some hitherto unsuspected mechanism. Moreover, our findings demonstrate that metabolite profiles represent highly sensitive markers for genomic differences between cells and their responses to external stimuli. This opens new perspectives to use metabolic profiling as a tool to study the rational redeployment of drugs in new disease settings

    The Hyperlipidaemic Drug Fenofibrate Significantly Reduces Infection by SARS-CoV-2 in Cell Culture Models

    Get PDF
    The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has caused a significant number of fatalities and worldwide disruption. To identify drugs to repurpose to treat SARS-CoV-2 infections, we established a screen to measure the dimerization of angiotensin-converting enzyme 2 (ACE2), the primary receptor for the virus. This screen identified fenofibric acid, the active metabolite of fenofibrate. Fenofibric acid also destabilized the receptor-binding domain (RBD) of the viral spike protein and inhibited RBD binding to ACE2 in enzyme-linked immunosorbent assay (ELISA) and whole cell-binding assays. Fenofibrate and fenofibric acid were tested by two independent laboratories measuring infection of cultured Vero cells using two different SARS-CoV-2 isolates. In both settings at drug concentrations, which are clinically achievable, fenofibrate and fenofibric acid reduced viral infection by up to 70%. Together with its extensive history of clinical use and its relatively good safety profile, this study identifies fenofibrate as a potential therapeutic agent requiring an urgent clinical evaluation to treat SARS-CoV-2 infection
    corecore