5 research outputs found
Infrared nanosensors of pico- to micro-newton forces
Mechanical force is an essential feature for many physical and biological
processes.1-12 Remote measurement of mechanical signals with high sensitivity
and spatial resolution is needed for diverse applications, including
robotics,13 biophysics,14-20 energy storage,21-24 and medicine.25-27 Nanoscale
luminescent force sensors excel at measuring piconewton forces,28-32 while
larger sensors have proven powerful in probing micronewton forces.33,34
However, large gaps remain in the force magnitudes that can be probed remotely
from subsurface or interfacial sites, and no individual, non-invasive sensor is
capable of measuring over the large dynamic range needed to understand many
systems.35,36 Here, we demonstrate Tm3+-doped avalanching nanoparticle37 force
sensors that can be addressed remotely by deeply penetrating near-infrared
(NIR) light and can detect piconewton to micronewton forces with a dynamic
range spanning more than four orders of magnitude. Using atomic force
microscopy coupled with single-nanoparticle optical spectroscopy, we
characterize the mechanical sensitivity of the photon avalanching process and
reveal its exceptional force responsiveness. By manipulating the Tm3+
concentrations and energy transfer within the nanosensors, we demonstrate
different optical force-sensing modalities, including mechanobrightening and
mechanochromism. The adaptability of these nanoscale optical force sensors,
along with their multiscale sensing capability, enable operation in the dynamic
and versatile environments present in real-world, complex structures spanning
biological organisms to nanoelectromechanical systems (NEMS)
Indefinite and Bidirectional Near Infrared Nanocrystal Photoswitching
Materials whose luminescence can be switched by optical stimulation drive
technologies ranging from superresolution imaging1-4, nanophotonics5, and
optical data storage6-8, to targeted pharmacology, optogenetics, and chemical
reactivity9. These photoswitchable probes, including organic fluorophores and
proteins, are prone to photodegradation, and often require phototoxic doses of
ultraviolet (UV) or visible light. Colloidal inorganic nanoparticles have
significant stability advantages over existing photoswitchable materials, but
the ability to switch emission bidirectionally, particularly with NIR light,
has not been reported with nanoparticles. Here, we present 2-way, near-infrared
(NIR) photoswitching of avalanching nanoparticles (ANPs), showing full optical
control of upconverted emission using phototriggers in the NIR-I and NIR-II
spectral regions useful for subsurface imaging. Employing single-step
photodarkening10-13 and photobrightening12,14-18, we demonstrate indefinite
photoswitching of individual nanoparticles (>1000 cycles over 7 h) in ambient
or aqueous conditions without measurable photodegradation. Critical steps of
the photoswitching mechanism are elucidated by modeling and by measuring the
photon avalanche properties of single ANPs in both bright and dark states.
Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable 2D
and 3D multi-level optical patterning of ANPs, as well as optical nanoscopy
with sub-{\AA} localization superresolution that allows us to distinguish
individual ANPs within tightly packed clusters.Comment: 15 pages, 5 figure
Infrared nanosensors of pico- to micro-newton forces
Mechanical force is an essential feature for many physical and biological processes.1-12 Remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for diverse applications, including robotics,13 biophysics,14-20 energy storage,21-24 and medicine.25-27 Nanoscale luminescent force sensors excel at measuring piconewton forces,28-32 while larger sensors have proven powerful in probing micronewton forces.33,34 However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor is capable of measuring over the large dynamic range needed to understand many systems.35,36 Here, we demonstrate Tm3+-doped avalanching nanoparticle37 force sensors that can be addressed remotely by deeply penetrating near-infrared (NIR) light and can detect piconewton to micronewton forces with a dynamic range spanning more than four orders of magnitude. Using atomic force microscopy coupled with single-nanoparticle optical spectroscopy, we characterize the mechanical sensitivity of the photon avalanching process and reveal its exceptional force responsiveness. By manipulating the Tm3+ concentrations and energy transfer within the nanosensors, we demonstrate different optical force-sensing modalities, including mechanobrightening and mechanochromism. The adaptability of these nanoscale optical force sensors, along with their multiscale sensing capability, enable operation in the dynamic and versatile environments present in real-world, complex structures spanning biological organisms to nanoelectromechanical systems (NEMS)
Recommended from our members
Indefinite and bidirectional near-infrared nanocrystal photoswitching
Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6,7, to targeted pharmacology, optogenetics, and chemical reactivity8. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles6,9 can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-16, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters
Indefinite and bidirectional near-infrared nanocrystal photoswitching
Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging(1-4), nanophotonics(5), and optical data storage(6,7), to targeted pharmacology, optogenetics, and chemical reactivity(8). These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles(6,9) can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening(10-13) and photobrightening(12,14-16), we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-A localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.11Nsciescopu