42 research outputs found

    Axisymmetric deformations of circular rings made of linear and Neo-Hookean materials under internal and external pressure: A benchmark for finite element codes

    Get PDF
    International audienceThe axisymmetric deformations of thick circular rings are investigated. Four materials are explored: linear material, incompressible Neo-Hookean material and Ogden's and Bower's forms of compressible Neo-Hookean material. Radial distributed forces and a displacement-dependent pressure are the external loads. This problem is relatively simple and allows analytical, or semi-analytical, solution; therefore it has been chosen as a benchmark to test commercial finite element software for various material laws at large strains. The solutions obtained with commercial finite element software are almost identical to the present semi-analytical ones, except for the linear material, for which commercial finite element programs give incorrect results.Highlights: Linear, incompressible and compressible Neo-Hookean materials are used. Analytical benchmark solution to test commercial programs. Two commercial FE programs give incorrect results for large strains and linear elastic material.</ol

    Rigid body dynamics of diamagnetically levitating graphite resonators

    Full text link
    Diamagnetic levitation is a promising technique for realizing resonant sensors and energy harvesters, since it offers thermal and mechanical isolation from the environment at zero power. To advance the application of diamagnetically levitating resonators, it is important to characterize their dynamics in the presence of both magnetic and gravitational fields. Here we experimentally actuate and measure rigid body modes of a diamagnetically levitating graphite plate. We numerically calculate the magnetic field and determine the influence of magnetic force on the resonance frequencies of the levitating plate. By analyzing damping mechanisms, we conclude that eddy current damping dominates dissipation in mm-sized plates. We use finite element simulations to model eddy current damping and find close agreement with experimental results. We also study the size-dependent Q-factors (Qs) of diamagnetically levitating plates and show that Qs above 100 million are theoretically attainable by reducing the size of the diamagnetic resonator down to microscale, making these systems of interest for next generation low-noise resonant sensors and oscillators.Comment: 6 pages, 4 figure

    High-frequency stochastic switching of graphene resonators near room temperature

    Full text link
    Stochastic switching between the two bistable states of a strongly driven mechanical resonator enables detection of weak signals based on probability distributions, in a manner that mimics biological systems. However, conventional silicon resonators at the microscale require a large amount of fluctuation power to achieve a switching rate in the order of a few Hertz. Here, we employ graphene membrane resonators of atomic thickness to achieve a stochastic switching rate of 7.8 kHz, which is 200 times faster than current state-of-the-art. The (effective) temperature of the fluctuations is approximately 400 K, which is 3000 times lower than the state-of-the-art. This shows that these membranes are potentially useful to transduce weak signals in the audible frequency domain. Furthermore, we perform numerical simulations to understand the transition dynamics of the resonator and derive simple analytical expressions to investigate the relevant scaling parameters that allow high-frequency, low-temperature stochastic switching to be achieved in mechanical resonators

    Quantifying stress distribution in ultra-large graphene drums through mode shape imaging

    Get PDF
    Suspended drums made of 2D materials hold potential for sensing applications. However, the industrialization of these applications is hindered by significant device-to-device variations presumably caused by non-uniform stress distributions induced by the fabrication process. Here, we introduce a methodology to determine the stress distribution from their mechanical resonance frequencies and corresponding mode shapes as measured by a laser Doppler vibrometer (LDV). To avoid limitations posed by the optical resolution of the LDV, we leverage a manufacturing process to create ultra-large graphene drums with diameters of up to 1000 μm. We solve the inverse problem of a Föppl–von Kármán plate model by an iterative procedure to obtain the stress distribution within the drums from the experimental data. Our results show that the generally used uniform pre-tension assumption overestimates the pre-stress value, exceeding the averaged stress obtained by more than 47%. Moreover, it is found that the reconstructed stress distributions are bi-axial, which likely originates from the transfer process. The introduced methodology allows one to estimate the tension distribution in drum resonators from their mechanical response and thereby paves the way for linking the used fabrication processes to the resulting device performance
    corecore