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ABSTRACT: Stochastic switching between the two bistable
states of a strongly driven mechanical resonator enables
detection of weak signals based on probability distributions, in
a manner that mimics biological systems. However, conven-
tional silicon resonators at the microscale require a large
amount of fluctuation power to achieve a switching rate in the
order of a few hertz. Here, we employ graphene membrane
resonators of atomic thickness to achieve a stochastic
switching rate of 4.1 kHz, which is 100 times faster than
current state-of-the-art. The (effective) temperature of the
fluctuations is approximately 400 K, which is 3000 times lower than the state-of-the-art. This shows that these membranes are
potentially useful to transduce weak signals in the audible frequency domain. Furthermore, we perform numerical simulations to
understand the transition dynamics of the resonator and use analytical expressions to investigate the relevant scaling parameters
that allow high-frequency, low-temperature stochastic switching to be achieved in mechanical resonators.
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Stochastic switching is the process by which a system
transitions randomly between two stable states, mediated

by the fluctuations in the environment. This phenomenon has
been observed in a variety of physical and biological
systems.1−16 Similarly, mechanical resonators that are strongly
driven can show stochastic switching between two stable
attractors.17−19 This can potentially improve the transduction
of small signals in a manner that mimics nature, by the
stochastic resonance phenomenon.20−24 However, high
fluctuation power, far above the fluctuations present at room
temperature, needs to be applied to achieve stochastic
switching. Despite the high resonance frequencies achieved
by scaling down the resonators to the micro- or nanoscale
regime, the switching rate is often quite low, on the order of 1
to 10 Hz. Extending this frequency range to the kilohertz
regime, while lowering the fluctuation power, opens the door
for new applications in the audible domain, such as
ultrasensitive microphones.
Mechanical resonators consisting of an atomically thin

membrane are ideal candidates to raise the switching rate.
Their low mass ensures a megahertz resonance frequency that
can be easily brought in the nonlinear regime. Graphene is a
single layer of carbon atoms with excellent mechanical
properties.25−27 Several works have demonstrated graphene
resonators,28,29 showing nonlinear behavior30,31 and several
practical applications such as pressure32−35 and gas
sensors.36,37 The lower mass and low stiffness by virtue of

the membrane’s thinness allows high switching rates to be
achieved at lower fluctuation levels.24

Here we demonstrate high-frequency stochastic switching in
strongly driven single-layer graphene drum resonators. Using
an optical drive and readout, we bring the resonator into the
bistable regime of the nonlinear Duffing response. By
artificially adding random fluctuations to the drive, the effective
temperature of the resonator is increased. We observe that the
switching rate is increased with an effective temperature
dependence that follows Kramer’s law.38 Switching rates as
high as 4.1 kHz are observed close to room temperature. This
work thus demonstrates a stochastic switching frequency that
is more than a factor 100 higher than in prior works on
mechanical resonators,24 at an effective temperature that is
over a factor of 3000 lower. Having a high stochastic switching
rate is important to enable high-bandwidth sensing using this
sensitive technique. Moreover, a low effective temperature Teff

is relevant to lower power consumption, and if Teff can be
brought down to room temperature, the intrinsic Brownian
motion of the resonator can be used to enable stochastic
switching based sensors. With stochastic switching frequencies
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above 20 Hz, this work demonstrates the potential of graphene
membranes to transduce signals in the audible frequency range.
Fabrication of the samples starts with a silicon chip with a

285 nm thick thermally grown silicon dioxide layer. Dumbbell-
shaped cavities with various diameters (Figure 1, parts a and b)
are etched into the oxide layer using reactive ion etching with a
depth of 300 nm. Single layer graphene grown by chemical
vapor deposition is transferred on top of the sample using a
support polymer. This polymer is dissolved and subsequently
dried using critical point drying, which results in breaking of
one side of the dumbbell and leaves a suspended resonator on
the other end that is used for the experiment. The fabrication
process is identical to that previously published in ref 39.
Figure 1c shows a schematic representation of the

experimental setup used to actuate and detect the motion of
single-layer graphene membranes. The red helium−neon laser
with a power of 2 mW (measured before the objective) is used
to detect the motion of the membranes and the amplitude of
motion is calibrated using nonlinear optical transduction.40

The blue (405 nm, 0.1 mW) power-modulated diode laser
thermally actuates the movement of the membrane, which can
easily reach the bistable geometrically nonlinear regime.31,39 A
vector network analyzer (VNA, Rohde and Schwarz ZNB4-
K4) actuates the membrane by sweeping the frequency
forward and backward and measures the amplitude and
phase of the motion. The effective temperature of the
resonator is artificially raised using an arbitrary waveform
generator (AWG) that outputs white noise.
In order to quantify the effective temperature, the Brownian

motion of the device is measured as a function of noise power
outputted by the AWG (Figure 1, parts e and f). By fitting a

Lorentzian to the measured PSD in Figure 1e and integrating
this fit between frequency 0 and∞, the mean square amplitude
⟨z2(t)⟩ of the device is derived which we use to define the
effective temperature Teff:

41
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where meff is the modal mass, ω is the resonance frequency,
and kB is Boltzmann’s constant. The effective temperature is a
means to express the fluctuation level in an intuitive manner:
the fluctuations are identical to the thermal fluctuations of an
undriven resonator at an actual temperature of T = Teff. The
maximum obtained Teff = 65 × 103K, which was limited by the
noise amplitude that can be applied by the AWG.
Since the amplitude is calibrated, the mean square amplitude

at low fluctuation powers (where Teff ≈ T, T = 295 K being the
environmental temperature) can also be used to determine the
modal mass meff of the resonance. From the equipartition
theorem:41
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we find meff = 1.85 fg. With the known modal mass, we can use
the frequency response in Figure 1d to find the equation of
motion. By fitting this frequency response, we find the
dimensionless equation of motion:

x x x x t2 cos F
3ζ α λ ω̈ + ̇ + + = (3)

with ζ = 0.0012 the damping ratio, corresponding to a quality
factor of 416.6, α = 200 the cubic stiffness coefficient and

Figure 1. Experimental setup. (a) Schematic figure of the sample used in the experiment. (b) Scanning electron microscope image of a successfully
fabricated resonator, the top side of the dumbbell is broken and the bottom forms a resonator. (c) Laser interferometer setup used to actuate and
readout the motion of the suspended graphene resonators. (d) Frequency sweeps at high modulation power, showing the Duffing response and the
bistable region. During measurements, the frequency is fixed in the center of the bistable region after finding the two saddle-node bifurcations
indicated by SN in the figure. z is the amplitude of the motion and R is the drum radius. The dimensionless frequency is ΩF/ω, ω and ΩF being the
resonance frequency (ω = 2π × 13.92 × 106 rad/s) and the drive frequency, respectively. (e) Measured single sided power spectral density of the
resonator’s amplitude at different noise levels (expressed as effective fluctuation temperature). (f) Mean square amplitude of resonance as a
function of applied noise power, this graph is used as calibration to extract the effective temperature.
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λ = 3 × 10−5. The fundamental frequency of the resonator is
13.92 MHz. The equation uses the generalized coordinate x(t)
which represents the deflection of the membrane’s center
normalized with respect to the membrane radius R = 2.5 μm.
The definition of all the scaled variables, here employed to
work only with relevant combinations of the parameters, are
provided in the Supporting Information, part S1.
Before the experiment, the resonator is prepared in a bistable

state as shown in Figure 1d. The frequency is swept forward
and backward to reveal the hysteretic behavior of the device
and the fixed drive frequency ωF is then set to be in the center
between the two saddle-node bifurcations. During the
experiment, the amplitude and phase of the resonator are
probed as a function of time using the VNA set to a bandwidth
of 10 kHz. There are now two signal sources driving the
system: the fixed driving frequency from the VNA and the
random fluctuations provided by the AWG. At a fluctuation
power of approximately 25 × 103K the stochastic switching
events are observed as shown in Figure 2(a). The amplitude
x(t) is split into the in-phase (P) and out-of-phase (Q) part
(x(t) = P(t) cos ωFt + Q(t) sin ωFt) as shown in Figure 2b,
which reveals the two stable configurations of the resonator.
Increasing the fluctuation power increases the switching rate as
shown in Figure 2d at 65 × 103K. This also causes some
broadening of the stable attractors, as can be seen from Figure
2e. Note that this figure does not give an accurate idea of the
transition path due to the low bandwidth, higher bandwidth
measurements that do reveal the transition path will be
discussed in Figure 4. The experimentally observed switching
rate, calculated by taking the inverse of the mean residence
time in the stable attractors, as a function of the fluctuation
power expressed in Teff is shown in Figure 2c. The experiment
was repeated twice to check whether effects of slow frequency

drift or other instabilities are affecting the experimental result,
however both measurements show the same trend. From
measurements on other mechanical systems in literature, we
expect the switching rate between the stable attractors to
follow Kramer’s law:8,13,24,38

r A
E

k T
expk k

k

B eff
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−Δi
k
jjjjj

y
{
zzzzz (4)

where rk is the transition rate from state k, ΔEk is an energy
barrier, kB is the Boltzmann constant, and Ak is the maximum
possible switching rate at high Teff. Fitting eq 4 to the
experimentally observed transition rate in Figure 2c shows
good agreement with the experimental result. From the fit, we
obtain an energy barrier of 3.04 aJ and a maximum possible
switching rate A = 17.5 kHz. To further investigate the
transition dynamics of the system, we plot the distributions N
for the residence times τhigh and τlow at 65 × 103 K as shown in
Figure 2f. The residence time distribution should follow a
Poisson distribution:8

N Br r( ) exp( )k kτ τ= − (5)

which is used to fit to the experimental data. The free
parameter B arises from the normalization of the residence
time distribution. From the fit, we find that the average
transition time τ̅up = τ̅down = 1.7 ms, which corresponds to a
transition rate of 0.58 kHz, matching the experimentally
obtained value.
In order to further understand the dynamic behavior of the

device, eq 3 is used to perform numerical simulations of the
system in the presence of fluctuations to compare to the
experimental results. We analyze the dynamics of the nonlinear
oscillator using the method of averaging.18,42 This method

Figure 2. Stochastic switching of the nonlinear resonator with a diameter of 5 μm. (a) Amplitude as a function of time for an effective temperature
Teff = 25 × 103 K, showing a total of 8 fluctuation-induced transitions. The right-hand side of the figure shows a histogram of the amplitude. (b)
Amplitude in the P-Q space for Teff = 25 × 103 K, each point is one sample of the measurement in part a. (c) Rate of up and down transitions as a
function of effective temperature, fitted with Kramer’s law (eq 4), two sets of consecutive measurements are shown to check for consistency. (d)
Amplitude as a function of time for an effective temperature Teff = 65 × 103 K, showing a total of 502 transitions. The right-hand side of the figure
shows a histogram of the amplitude. (e) Amplitude in the P-Q space for Teff = 65 × 103 K. f) Residence time distributions for both states at Teff =
65 × 103, a Poisson distribution (eq 5) is fitted to the data and gives a transition time τk = 1.7 ms, corresponding to a transition rate rk = 0.58 kHz.
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describes the change of the vibration amplitude in time by
ironing out the fast oscillations (see Supporting Information,
part S1 for further details). Averaging is appropriate since the
quality factor is high and the transition rate is much lower than
the resonance frequency.
First, a linear stability analysis is performed for the

deterministic system. The eigenvalues of the linearized system
predicts two stable equilibria separated by an unstable
equilibrium (a saddle). The original model is perturbed by
adding a Gaussian white noise process, with intensity σ, details
of which are shown in the Supporting Information, part S1.
The intensity σ was matched to the experiments by evaluating
the mean square amplitude due to the fluctuations ⟨x2(t)⟩ from
the simulations and matching them to the experimentally
measured mean square amplitude in Figure 1f. The stochastic
switching behavior obtained via numerical integration of the
stochastic differential equations can be seen in Figure 3.
We simulate a time evolution of the system as shown in

Figure 3a, matching the time and effective temperature of the
fluctuations of the experiment in Figure 2a. From these
simulations, it can be seen that the large amplitude solution is
the most probable state for the low-fluctuation configuration
because the system resides for most of the time in the basin of
attraction of this stable point (see the histogram in Figure 3a).
Figure 3d, which corresponds to the measurement in Figure
2d, shows a massive number of transitions for the resonator
with a more equal residence time distribution in the two
separate states. The numerical prediction is in qualitative
agreement with the switching density illustrated in Figure 2,
parts a and d.
The linear stability analysis of our dynamical system unveils

the existence and local properties of a given steady state.43 The

deterministic skeleton of our system is shown in Figure 3(f), it
presents 3 equilibria: eA = {0.002460,−0.000508}, eB =
{−0.006008,−0.007784}, and eS = {0.006139,−0.005274}
where eA and eB are in stable equilibrium but eS is a saddle
point. The real part of the eigenvalues of the Jacobian for the
stable equilibrium is the same for both the stable equilibrium
points (−0.00012 ± 0.003769i for eA, −0.00012 ± 0.005318i
for eB, and −0.004619 and 0.002219 for eS) suggesting that the
points are equally stable. However, these equilibria under the
influence of a stochastic dynamics can lose their property of
stability turning in metastable attracting states.44 As a matter of
fact, noise-induced fluctuations induce shifts between the
metastable equilibria and thus inhibit us to infer the dynamical
behavior out of the deterministic linear stability analysis. Parts
a and d of Figure 3 show broad oscillations around the low-
amplitude stable equilibrium, while more confined motion is
observed around the high-amplitude equilibrium state. The
density diagrams of the solution for the long-term (0.45 s)
realization of the system are reported in Figure 3, parts b, c,
and e.
At low-fluctuation levels (Figure 3b) the cloud spread is

limited and the switching paths (blue and red paths in Figure
3b) are concentrated in crossing the saddle (gray dot in Figure
3f). The direction of the trajectories is in full accordance with
the rotation of the orbits predicted by the stability analysis.
Figure 3e illustrates a set of paths used by the system to revert
its states. Moreover, it shows a larger spread in the phase-
space, due to stronger excitation of slow-dynamics around each
of the fixed points, besides the higher frequency stochastic
switching between low and high-amplitude states. Finally, the
switching rate as a function of the intensity of the additive
Gaussian noise is reported in Figure 3c. The up and down

Figure 3. Simulations of stochastic switching of the nonlinear resonator in close agreement with the experiments in Figure 2. (a) Time evolution
for a duration of 0.45 s of the stochastic system. Values for the plot are noise intensity σ = 0.000057 and integration step in the Euler−Maruyama
method of dt = 15. A histogram of the distribution of the solution is shown on the right; (b) Density histogram of the solution for the long-term
realization of the system of part a. Darker regions refer to states with a more probable occurrence. (c) Boxplot of the switching rate for the rate of
up (blue) and down (orange) transitions as a function of noise intensity σ. The boxes limits are the 75% and 25% quantile, and the white marker is
the median. (d) Time evolution of the stochastic system (σ = 0.000086, dt = 15). (e) Density histogram of the solution for the long-term
realization of the system of part d. (f) Stream plot for the deterministic vector field (eq 5 of theSupporting Information) for the excitation
frequency ωF = 1.0063. The white dots indicate the stable spirals while the gray dot point the saddle node.
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transition rates are found to be similar and in accordance with
the experimental findings.
Our experiments show high-frequency stochastic switching

at lower effective temperatures. It is interesting to investigate
how the system can be engineered to increase the switching
rate further, for example to 20 kHz for microphone
applications, while reducing the temperature of the fluctuations
to room temperature. To reduce the effective temperature,
from eq 4 one needs to reduce the energy barrier ΔEk. Near
the saddle node bifurcations, this barrier scales as |ωF − ωk|

ξ

where ωk is the frequency of the bifurcation and ξ = 3/2 the
critical exponent.45−47 ΔEk thus reduces to zero near the
bifurcation points and this should significantly increase the
switching rate according to eq 4. Furthermore, near the
bifucation points, the energy barrier also scales approximately
as ΔE ∝ λ2.45 This shows that the driving force should be
minimized, which can be achieved by driving the system
slightly above the critical force, which is the minimal force
where the system first shows instability.
To qualitatively show that minimizing λ and choosing a

frequency close to the saddle node bifurcations result in high-
frequency stochastic switching at lower temperatures, we
perform an additional experiment on a different 3-μm diameter

drum in Figure 4. The bandwidth on the VNA was set to a
high value of 1 MHz, to reveal the higher switching rate
compared to Figure 2 (except Figure 4a, which was performed
with a 10 kHz bandwidth). We drive the system at two
different driving levels as shown in Figure 4a; 0.562 V is almost
above the critical forcing amplitude where the system becomes
unstable. At these low driving levels, stochastic switching
events are readily observed without adding noise to the system.
To determine the switching rates, the amplitude was recorded
as a function of time at several fixed frequencies, while keeping
the drive amplitude constant. Figure 4b shows the histogram of
the amplitude at different fixed driving frequencies for the
0.562 V drive amplitude and Figure 4c shows the
corresponding up and down switching rates. Increasing the
drive amplitude separates the two stable attractors as shown in
Figure 4d. This figure also reveals the paths of the transitions,
which can be revealed due to the higher bandwidth of the
measurement. The higher driving level of 0.707 V decreases
the switching rate drastically, as shown in Figure 4e, showing
that driving the resonator as close to the critical force as
possible results in a higher switching rate.
We also observe in parts c and e of Figure 4 that in the

vicinity of the saddle node bifurcations the observed transition

Figure 4. Stochastic switching without additional noise on a different 3-μm diameter drum. (a) Forward frequency sweeps at two ac driving levels,
showing stochastic switching in the bistable region. (b) Histogram of the amplitude at different fixed driving frequencies at 0.562 V (RMS) driving
power. (c) Up and down switching rate as a function of fixed driving frequency with a drive amplitude of 0.562 V (RMS), including a least-square
fit using eq 6. (d) P-Q-space of the amplitude for drive amplitude 0.562 V(RMS) at 14.131 MHz and for drive amplitude 0.707 V (RMS) at 14.18
MHz. (e) Up and down switching rate as a function of fixed driving frequency with a drive amplitude of 0.707 V (RMS), including a least-square fit
using eq 6.
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rate is higher (Figure 4c,e), as expected. A least-square fit is
performed to the data using the equation:

r A b

A b

exp( )

exp( ),

k F

F

1 1 SN
3/2

2 2 SN
3/2

ω ω

ω ω

= − | − | +

− | − | (6)

where ωSN is the frequency of the saddle node bifurcation.
These fits are included as black lines in parts c and e of Figure
4. Due to the limited frequency resolution of the measurement,
this fit only provides rough estimates. However, we find the
coefficients bk between 3 × 10−8 to 9 × 10−8. A bit further
away from the saddle node bifurcations this results in energy
barriers in the order of ∼0.1 aJ. Considering the scaling of the
amplitudes that was performed in this measurement compared
to Figure 2, this is a reasonable order of magnitude.
Close to the critical force we observe a maximum switching

rate of 4063 Hz. The state-of-the-art in conventional MEMS
devices achieved a 30 Hz switching rate at an effective
temperature of 1.2 × 106 K,24 we have thus improved the
switching rate by a factor of ∼100. For the effective
temperature, we have to consider that the laser increases the
temperature of the graphene drum somewhat. We make a
rough estimate of the absorbed laser power to be 0.1 mW,
based on the incident laser powers. From measurements on
similar sized drums in literature48 we estimate the maximum
temperature in the drum to be roughly 400 K. The
temperature of the fluctuations has thus been lowered by a
factor of at least 3000.
In conclusion, we have demonstrated kHz range stochastic

switching on graphene drum resonators. The switching rate is
2 orders of magnitude higher, while the effective temperature
of the fluctuations is 3 orders of magnitude lower than in state-
of-the-art MEMS devices. Simulations of the system’s slow
dynamics provide qualitative understanding of the stochastic
behavior of the dynamical system. Further work can focus on
increasing the switching rate and lowering of the fluctuation
threshold energy ΔE to enable high-bandwidth (>10 kHz),
stochastic switching enhanced, sensing at room temperature.
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