26 research outputs found

    Improvement of the welding technology of the VTN boiler body and the study of structural-phase transformations and corrosion resistance of welds (on the order NVP «Teplobak»)

    No full text
    Фараонов А.Ю. Вдосконалення технології зварювання корпусу бойлера ВТН та дослідження структурно-фазових перетворень та стійкості до корозії зварних швів (на замовлення НВП ”Теплобак”). У даній кваліфікаційній роботі розроблено технологію складання та зварювання бойлера. Запропоновано: автоматичне електродугове зварювання у захисному середовищі Ar+O2+CO2; розраховано режим зварювання; запропоновано раціональне обладнання і пристосування; проведено розрахунки конструкції роликопор та ланцюгового центратора, проведено дослідження та прогнозування структурно-фазових перетворень в ЗТВ, вплив виду термічного оброблення на структуру, механічні та корозійні властивості зварних з’єднань виробу; розроблено заходи з охорони праці та безпеки в надзвичайних ситуаціях.Faraonov A.Yu. Improvement of the welding technology of the VTN boiler body and the study of structural-phase transformations and corrosion resistance of welds (on the order NVP «Teplobak»). In this qualification work, the technology of assembly and welding of the boiler was developed. The following proposed: automatic electric arc welding in protective environment Ar+O2+CO2; the welding mode; rational equipment and devices; calculations of the design of the roller borer and chain centerer, research and forecasting of structural-phase transformations in HAZ, the effect of the type of heat treatment on the structure, mechanical and corrosion properties of the welded joints. In addition, occupational health and safety measures in emergency situations have been developed.Вступ 1 Аналітична частина 1.1 Характеристика виробу 1.2 Характеристика матеріалу виробу 1.3 Корозія металу в пароводяному тракті бойлера 1.4 Технічні умови на виготовлення зварної конструкції 1.4.1 Вимоги матеріалів і напівфабрикатів 1.4.2 Вимоги до розмірів та якості поверхні 1.4.3 Вимоги до зварних з’єднань виробу 1.4.4 Вимоги до якості виробу 1.5 Аналіз базового технологічного процесу виготовлення 2 Технологічна частина 2.1 Обґрунтування способу зварювання 2.2 Обгрунтування вибору зварювальних матеріалів 2.3 Розрахунок режиму зварювання стикових з'єднань 2.4 Технологічні особливості складання та зварювання бойлера 2.6 Контроль якості зварювання бойлера 3. Науково-дослідна частина 3.1 Розрахунок термічного циклу 3.2 Аналіз очікуваної структури зони термічного впливу 3.3 Розрахунок прогнозних структур після зварювання 3.4 Вплив термічного оброблення на структуру та механічні властивості зварного з’єднання 3.5 Вплив термічної обробки на корозійні властивості ЗЗ 4. Конструкторська частина 4.1 Розрахунок роликопор 4.2 Розрахунок центруючого механізму 5. Охорона праці та безпека в надзвичайних ситуаціях 5.1 Аналіз та характеристика потенційних небезпек та шкідливостей на дільниці цеху 5.2 Розрахунок природного освітлення дільниці цеху 5.3 Підвищення стійкості інженерно-технічного комплексу об’єкта до ударної хвилі Загальні висновки Перелік посилань Додатк

    Удосконалення моделей управління Інтернет проектами

    No full text
    Фараонов, Ю. В. Удосконалення моделей управління Інтернет проектами = Improvement of Internet project management models : магістерська робота ; спец. 122 “Комп’ютерні науки“ / Ю. В. Фараонов ; наук. кер. В. В. Романов. – Миколаїв : НУК, 2021. – 108 с.Фараонов Ю. В. «Удосконалення моделей управління Інтернет проектами». На правах рукопису. Магістерська робота за спеціальністю 122 Комп’ютерні науки, освітня програма – Управління проектами. Національний університет кораблебудування ім. адм. Макарова. Миколаїв, 2021. Інформаційні технології та Інтернет активно вторгаються в наше життя. Сьогодні все більша і більша кількість компаній використовують можливості інформаційних технологій і, зокрема, глобальної мережі Інтернет. Бурхливий розвиток можливостей глобальної мережі "Інтернет" і використання мережі як інструмент ведення бізнесу пред'явило нові вимоги до створення сайтів і використання технології управління проектами. В магістерській роботі розглянуто сутність методології P2M, підходи методології P2M до управління Інтернет- проектами, за допомогою SWОT-аналізу проведено аналіз переваг та недоліків моделей управління проектом за Р2М та запропоновано удосконалення моделей та процесів управління при реалізації Інтернет-проекту.Faraonov Yu. V. "Improvement of Internet project management models" On the rights of the manuscript. Master's thesis in 122-Computer Science, educational program – Project Management. National University of Shipbuilding. adm. Makarova. Mykolaiv. Information technology and the Internet are actively invading our lives. Today, more and more companies are using the capabilities of information technology and, in particular, the global Internet. The rapid development of the capabilities of the global network "Internet" and the use of the network as a tool for doing business has placed new demands on the creation of sites and the use of project management technology. The master's thesis considers the essence of P2M methodology, approaches of P2M methodology to Internet project management, with the help of SWOT analysis the analysis of advantages and disadvantages of P2M project management models and offers improvement of management models and processes in Internet project implementation

    Coordination Complexes of Transition Metals (M = Mo, Fe, Rh, and Ru) with Tin(II) Phthalocyanine in Neutral, Monoanionic, and Dianionic States

    Get PDF
    The ability of tin atoms to form stable Sn–M bonds with transition metals was used to prepare transition metal complexes with tin­(II) phthalocyanine in neutral, monoanionic, and dianionic states. These complexes were obtained via the interactions of [Sn<sup>IV</sup>Cl<sub>2</sub>Pc­(3−)]<sup>•–</sup> or [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup> radical anions with {Cp*Mo­(CO)<sub>2</sub>}<sub>2</sub>, {CpFe­(CO)<sub>2</sub>}<sub>2</sub>, {CpMo­(CO)<sub>3</sub>}<sub>2</sub>, Fe<sub>3</sub>(CO)<sub>12</sub>, {Cp*RhCl<sub>2</sub>}<sub>2</sub>, or Ph<sub>5</sub>CpRu­(CO)<sub>2</sub>Cl. The neutral coordination complexes of Cp*MoBr­(CO)<sub>2</sub>[Sn<sup>II</sup>Pc­(2−)]·0.5C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>1</b>) and CpFe­(CO)<sub>2</sub>[Sn<sup>II</sup>Pc­(2−)]·2C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>2</b>) were obtained from [Sn<sup>IV</sup>Cl<sub>2</sub>Pc­(3−)]<sup>•–</sup>. On the other hand, the coordination of transition metals to [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup> yielded anionic coordination complexes preserving the spin on [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup>. However, in the case of {cryptand­[2,2,2]­(Na<sup>+</sup>)}­{CpFe<sup>II</sup>(CO)<sub>2</sub>[Sn<sup>II</sup>Pc­(4−)]}<sup>−</sup>·C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>4</b>), charge transfer from CpFe<sup>I</sup>(CO)<sub>2</sub> to [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup> took place to form the diamagnetic [Sn<sup>II</sup>Pc­(4−)]<sup>2–</sup> dianion and {CpFe<sup>II</sup>(CO)<sub>2</sub>}<sup>+</sup>. The complexes {cryptand­[2,2,2]­(Na<sup>+</sup>)}­{Fe­(CO)<sub>4</sub>[Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup>} (<b>5</b>), {cryptand­[2,2,2]­(Na<sup>+</sup>)}­{CpMo­(CO)<sub>2</sub>[Sn<sup>II</sup>Pc­(2−)­Sn<sup>II</sup>Pc­(3−)<sup>•–</sup>]} (<b>6</b>), and {cryptand­[2,2,2]­(Na<sup>+</sup>)}­{Cp*RhCl<sub>2</sub>[Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup>} (<b>7</b>) have magnetic moments of 1.75, 2.41, and 1.75 μ<sub>B</sub>, respectively, owing to the presence of <i>S</i> = 1/2 spins on [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup> and CpMo<sup>I</sup>(CO)<sub>2</sub> (for <b>6</b>). In addition, the strong antiferromagnetic coupling of spins with Weiss temperatures of −35.5 −28.6 K was realized between the CpMo<sup>I</sup>(CO)<sub>2</sub> and the [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup> units in <b>6</b> and the π-stacking {Fe­(CO)<sub>4</sub>[Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup>}<sub>2</sub> dimers of <b>5</b>, respectively. The [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup> radical anions substituted the chloride anions in Ph<sub>5</sub>CpRu­(CO)<sub>2</sub>Cl to form the formally neutral compound {Ph<sub>5</sub>CpRu<sup>II</sup>(CO)<sub>2</sub>[Sn<sup>II</sup>Pc­(3−)]} (<b>8</b>) in which the negative charge and spin are preserved on [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup>. The strong antiferromagnetic coupling of spins with a magnetic exchange interaction <i>J/k</i><sub>B</sub> = −183 K in <b>8</b> is explained by the close packing of [Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup> in the π-stacked {Ph<sub>5</sub>CpRu<sup>II</sup>(CO)<sub>2</sub>[Sn<sup>II</sup>Pc­(3−)]<sup>•–</sup>}<sub>2</sub> dimers

    Layered Organic Conductors Based on BEDT-TTF and Ho, Dy, Tb Chlorides

    No full text
    Molecular semiconductors with lanthanide ions have been synthesized based on BEDT-TTF and lanthanide chlorides: (BEDT-TTF)2[HoCl2(H2O)6]Cl2(H2O)2 (1, which contains a 4f holmium cation), and (BEDT-TTF)2LnCl4(H2O)n (Ln = Dy, Tb, Ho (2–4), which contain 4f anions of lanthanides). Conductivity and EPR measurements have been carried out along with the SQUID magnetometry, and the crystal structure has been established for 1. The structure of 1 is characterized by an alternation of organic radical cation layers composed of BEDT-TTF chains and inorganic layers consisting of chains of the [HoCl2(H2O)6]+ cations interlinked by chlorine anions and crystallization water molecules. The magnetic susceptibility of 1–3 determined mainly by lanthanide ions follows the Curie–Weiss law with the Weiss temperatures of −3, −3, −2 K for 1–3, respectively, indicating weak antiferromagnetic coupling between paramagnetic lanthanide ions. The signals attributed to the BEDT-TTF+· radical cations only are observed in the EPR spectra of 1–3, which makes it possible to study their magnetic behavior. There are two types of chains in the organic layers of 1: the chains composed of neutral molecules and those formed by BEDT-TTF+· radical cations. As a result, uniform 1D antiferromagnetic coupling of spins is observed in the BEDT-TTF+· chains with estimated exchange interaction J = −10 K. The study of dynamic magnetic properties of 1–3 shows that these compounds are not SMMs

    Layered Organic Conductors Based on BEDT-TTF and Ho, Dy, Tb Chlorides

    No full text
    Molecular semiconductors with lanthanide ions have been synthesized based on BEDT-TTF and lanthanide chlorides: (BEDT-TTF)2[HoCl2(H2O)6]Cl2(H2O)2 (1, which contains a 4f holmium cation), and (BEDT-TTF)2LnCl4(H2O)n (Ln = Dy, Tb, Ho (2&ndash;4), which contain 4f anions of lanthanides). Conductivity and EPR measurements have been carried out along with the SQUID magnetometry, and the crystal structure has been established for 1. The structure of 1 is characterized by an alternation of organic radical cation layers composed of BEDT-TTF chains and inorganic layers consisting of chains of the [HoCl2(H2O)6]+ cations interlinked by chlorine anions and crystallization water molecules. The magnetic susceptibility of 1&ndash;3 determined mainly by lanthanide ions follows the Curie&ndash;Weiss law with the Weiss temperatures of &minus;3, &minus;3, &minus;2 K for 1&ndash;3, respectively, indicating weak antiferromagnetic coupling between paramagnetic lanthanide ions. The signals attributed to the BEDT-TTF+&#903; radical cations only are observed in the EPR spectra of 1&ndash;3, which makes it possible to study their magnetic behavior. There are two types of chains in the organic layers of 1: the chains composed of neutral molecules and those formed by BEDT-TTF+&#903; radical cations. As a result, uniform 1D antiferromagnetic coupling of spins is observed in the BEDT-TTF+&#903; chains with estimated exchange interaction J = &minus;10 K. The study of dynamic magnetic properties of 1&ndash;3 shows that these compounds are not SMMs

    Single-Molecule Magnets Based on Heteroleptic Terbium(III) Trisphthalocyaninate in Solvent-Free and Solvent-Containing Forms

    No full text
    Binuclear heteroleptic triple-decker terbium(III) phthalocyaninate (Pc)Tb[(15C5)4Pc]Tb(Pc), where Pc2− is phthalocyaninate dianion and 15C5 is a 15-crown-5 moiety, has been synthesized as a solvent-free powder (1) and a well-defined crystal solvate with o-dichlorobenzene (Pc)Tb[(15C5)4Pc]Tb(Pc)⋅6C6H4Cl2 (2). In the crystal structure of 2, the Tb-N(Pc) distances to the nitrogen atoms in the outer and inner decks are 2.350–2.367(4) and 2.583–2.598(4) Å, respectively, and the Tb–Tb distance is 3.4667(3) Å. The twist angle between the outer and the inner decks is 42.6°. The magnetic properties were studied for both 1 and 2. The χMT magnitude of 23.3 emu⋅K/mol at 300 K indicates a contribution of two TbIII centers with the 7F6 ground state. The χMT product increases with decreasing temperature to reach 38.5 emu⋅K/mol at 2 K. This is indicative of ferromagnetic coupling between TbIII spins in accordance with previous data for triple-decker lanthanide phthalocyaninates of a dipolar nature. Both forms show a single-molecule magnet (SMM) behavior manifesting the in-phase (χ′) and out-of-phase (χ″) AC susceptibility signals in an oscillating field of 3 Oe with estimated effective spin-reversal energy barriers (Ueff) of 222(9) and 93(7) cm−1 for 1 and 2, respectively. The compounds show narrow hysteresis loops in the −1 – +1 kOe range, and the splitting between the zero-field-cooling and field-cooling curves is observed below 6 K. Thus, in spite of similar static magnetic characteristics, each form of the Tb(III) complex shows a different dynamic SMM behavior

    Complexes of transition metal carbonyl clusters with tin(ii) phthalocyanine in neutral and radical anion states: methods of synthesis, structures and properties

    No full text
    Coordination of tin(II) phthalocyanine to transition metal carbonyl clusters in neutral {SnII(Pc²⁻)}⁰ or radical anion {SnII(Pc˙³⁻)}⁻ states is reported. Direct interaction of Co₄(CO)₁₂ with {SnII(Pc²⁻)}⁰ yields a crystalline complex {Co₄(CO)₁₁·SnII(Pc²⁻)} (1). There is no charge transfer from the cluster to phthalocyanine in 1, which preserves the diamagnetic Pc²⁻ macrocycle. The Ru₃(CO)₁₂ cluster forms complexes with one or two equivalents of {SnII(Pc˙³⁻)}⁻ to yield crystalline {Cryptand[2.2.2](Na⁺)}{Ru₃(CO)₁₁·SnII(Pc˙³⁻)}⁻ (2) or {Cryptand[2.2.2](M⁺)}2{Ru₃(CO)₁₀·[SnII(Pc˙³⁻)]₂}²⁻·4C₆H₄Cl₂ (3) (M⁺ is K or Cs). Paramagnetic {SnII(Pc˙³⁻)}⁻ species in 2 are packed in π-stacking [{SnII(Pc˙³⁻)}⁻]₂ dimers, providing strong antiferromagnetic coupling of spins with exchange interaction J/kB = −19 K. Reduction of Ru₃(CO)₁₂, Os₃(CO)₁₂ and Ir4(CO)₁₂ clusters by decamethylchromocene (Cp*₂Cr) and subsequent oxidation of the reduced species by {SnIVCl₂(Pc²⁻)}⁰ yield a series of complexes with high-spin Cp*₂Cr⁺ counter cations (S = 3/2): (Cp*₂Cr⁺){Ru₃(CO)₁₁·SnII(Pc˙³⁻)}⁻·C₆H₄Cl₂ (4), (Cp*₂Cr⁺){Os₃(CO)₁₀Cl·SnII(Pc˙³⁻)}⁻·C₆H₄Cl₂ (5) and (Cp*₂Cr⁺){Ir₄(CO)₁₁·SnII(Pc˙³⁻)}₂⁻ (6). It is seen that reduced clusters are oxidized by SnIV, which is transferred to SnII, whereas the Pc²⁻ macrocycle is reduced to Pc˙³⁻. In the case of Os₃(CO)₁₂, oxidation of the metal atom in the cluster is observed to be accompanied by the formation of Os₃(CO)₁₀Cl with one OsI center. Rather weak magnetic coupling is observed between paramagnetic Cp*₂Cr⁺ and {SnII(Pc˙³⁻)}⁻ species in 4, but this exchange interaction is enhanced in 5 owing to Os₃(CO)₁₀Cl clusters with paramagnetic OsI (S = 1/2) also being involved in antiferromagnetic coupling of spins. The formation of {SnII(Pc˙³⁻)}⁻ with radical trianion Pc˙³⁻ macrocycles in 2–5 is supported by the appearance of new absorption bands in the NIR spectra and essential Nmeso–C bond alternation in Pc (for 3–5). On the whole, this work shows that both diamagnetic {SnII(Pc²⁻)}0 and paramagnetic {SnII(Pc˙³⁻)}⁻ ligands substitute carbonyl ligands in the transition metal carbonyl clusters, forming well-soluble paramagnetic solids absorbing light in the visible and NIR ranges

    Single-Molecule Magnets Based on Heteroleptic Terbium(III) Trisphthalocyaninate in Solvent-Free and Solvent-Containing Forms

    No full text
    Binuclear heteroleptic triple-decker terbium(III) phthalocyaninate (Pc)Tb[(15C5)4Pc]Tb(Pc), where Pc2&minus; is phthalocyaninate dianion and 15C5 is a 15-crown-5 moiety, has been synthesized as a solvent-free powder (1) and a well-defined crystal solvate with o-dichlorobenzene (Pc)Tb[(15C5)4Pc]Tb(Pc)&sdot;6C6H4Cl2 (2). In the crystal structure of 2, the Tb-N(Pc) distances to the nitrogen atoms in the outer and inner decks are 2.350&ndash;2.367(4) and 2.583&ndash;2.598(4) &Aring;, respectively, and the Tb&ndash;Tb distance is 3.4667(3) &Aring;. The twist angle between the outer and the inner decks is 42.6&deg;. The magnetic properties were studied for both 1 and 2. The &chi;MT magnitude of 23.3 emu&sdot;K/mol at 300 K indicates a contribution of two TbIII centers with the 7F6 ground state. The &chi;MT product increases with decreasing temperature to reach 38.5 emu&sdot;K/mol at 2 K. This is indicative of ferromagnetic coupling between TbIII spins in accordance with previous data for triple-decker lanthanide phthalocyaninates of a dipolar nature. Both forms show a single-molecule magnet (SMM) behavior manifesting the in-phase (&chi;&prime;) and out-of-phase (&chi;&Prime;) AC susceptibility signals in an oscillating field of 3 Oe with estimated effective spin-reversal energy barriers (Ueff) of 222(9) and 93(7) cm&minus;1 for 1 and 2, respectively. The compounds show narrow hysteresis loops in the &minus;1 &ndash; +1 kOe range, and the splitting between the zero-field-cooling and field-cooling curves is observed below 6 K. Thus, in spite of similar static magnetic characteristics, each form of the Tb(III) complex shows a different dynamic SMM behavior
    corecore