424 research outputs found

    Entropic Elasticity of Phantom Percolation Networks

    Full text link
    A new method is used to measure the stress and elastic constants of purely entropic phantom networks, in which a fraction pp of neighbors are tethered by inextensible bonds. We find that close to the percolation threshold pcp_c the shear modulus behaves as (ppc)f(p-p_c)^f, where the exponent f1.35f\approx 1.35 in two dimensions, and f1.95f\approx 1.95 in three dimensions, close to the corresponding values of the conductivity exponent in random resistor networks. The components of the stiffness tensor (elastic constants) of the spanning cluster follow a power law (ppc)g\sim(p-p_c)^g, with an exponent g2.0g\approx 2.0 and 2.6 in two and three dimensions, respectively.Comment: submitted to the Europhys. Lett., 7 pages, 5 figure

    Globular Structures of a Helix-Coil Copolymer: Self-Consistent Treatment

    Full text link
    A self-consistent field theory was developed in the grand-canonical ensemble formulation to study transitions in a helix-coil multiblock globule. Helical and coil parts are treated as stiff rods and self-avoiding walks of variable lengths correspondingly. The resulting field-theory takes, in addition to the conventional Zimm-Bragg (B.H. Zimm, I.K. Bragg, J. Chem. Phys. 31, 526 (1959)) parameters, also three-dimensional interaction terms into account. The appropriate differential equations which determine the self-consistent fields were solved numerically with finite element method. Three different phase states are found: open chain, amorphous globule and nematic liquid-crystalline (LC) globule. The LC-globule formation is driven by the interplay between the hydrophobic helical segments attraction and the anisotropic globule surface energy of an entropic nature. The full phase diagram of the helix-coil copolymer was calculated and thoroughly discussed. The suggested theory shows a clear interplay between secondary and tertiary structures in globular homopolypeptides.Comment: 26 pages, 30 figures, corrected some typo

    Current large deviations in a driven dissipative model

    Full text link
    We consider lattice gas diffusive dynamics with creation-annihilation in the bulk and maintained out of equilibrium by two reservoirs at the boundaries. This stochastic particle system can be viewed as a toy model for granular gases where the energy is injected at the boundary and dissipated in the bulk. The large deviation functional for the particle currents flowing through the system is computed and some physical consequences are discussed: the mechanism for local current fluctuations, dynamical phase transitions, the fluctuation-relation

    Algebraic Correlation Function and Anomalous Diffusion in the HMF model

    Get PDF
    In the quasi-stationary states of the Hamiltonian Mean-Field model, we numerically compute correlation functions of momenta and diffusion of angles with homogeneous initial conditions. This is an example, in a N-body Hamiltonian system, of anomalous transport properties characterized by non exponential relaxations and long-range temporal correlations. Kinetic theory predicts a striking transition between weak anomalous diffusion and strong anomalous diffusion. The numerical results are in excellent agreement with the quantitative predictions of the anomalous transport exponents. Noteworthy, also at statistical equilibrium, the system exhibits long-range temporal correlations: the correlation function is inversely proportional to time with a logarithmic correction instead of the usually expected exponential decay, leading to weak anomalous transport properties

    Características físico-químicas de meis produzidos por espécies de meliponíneos.

    Get PDF
    Além da abelhas Africanizadas (Apis mellifera L.), as abelhas indígenas sem ferrão ou meliponíneos (Meliponinae) são potenciais produtoras de mel. Esse produto apresenta carcterísticas distintas do mel produzido pelas abelhas do gênero Apis, sendo muito apreciado pelos consumidores. Entretanto, são escassos os dados científicos a respeito da composição desse mel na literatura nacional e internacional. A proposta deste trabalho é avaliar as características físico-químicas do mel produzido por meliponíneos. As análises físico-químico foram realizadas de acordo com as técnicas descritas pela AOAC (Association of Official Analytical Chemists), e pela European Honey Comission, conforme recomendado pela CAC (Codex Alimentarius Comission). Os resultados obtidos reforçam a necessidade do desenvolvimento de um padrão próprio para os méis de abelhas sem ferrão, incluindo critérios microbiológicos.Disponível também em: Cadernos de Agroecologia, V. 5, n.1, 2010

    Damped finite-time-singularity driven by noise

    Full text link
    We consider the combined influence of linear damping and noise on a dynamical finite-time-singularity model for a single degree of freedom. We find that the noise effectively resolves the finite-time-singularity and replaces it by a first-passage-time or absorbing state distribution with a peak at the singularity and a long time tail. The damping introduces a characteristic cross-over time. In the early time regime the probability distribution and first-passage-time distribution show a power law behavior with scaling exponent depending on the ratio of the non linear coupling strength to the noise strength. In the late time regime the behavior is controlled by the damping. The study might be of relevance in the context of hydrodynamics on a nanometer scale, in material physics, and in biophysics.Comment: 9 pages, 4 eps-figures, revtex4 fil

    Dynamical analysis and constraints for the HD 196885 system

    Full text link
    The HD\,196885 system is composed of a binary star and a planet orbiting the primary. The orbit of the binary is fully constrained by astrometry, but for the planet the inclination with respect to the plane of the sky and the longitude of the node are unknown. Here we perform a full analysis of the HD\,196885 system by exploring the two free parameters of the planet and choosing different sets of angular variables. We find that the most likely configurations for the planet is either nearly coplanar orbits (prograde and retrograde), or highly inclined orbits near the Lidov-Kozai equilibrium points, i = 44^{\circ} or i = 137^{\circ} . Among coplanar orbits, the retrograde ones appear to be less chaotic, while for the orbits near the Lidov-Kozai equilibria, those around \omega= 270^{\circ} are more reliable, where \omega_k is the argument of pericenter of the planet's orbit with respect to the binary's orbit. From the observer's point of view (plane of the sky) stable areas are restricted to (I1, \Omega_1) \sim (65^{\circ}, 80^{\circ}), (65^{\circ},260^{\circ}), (115^{\circ},80^{\circ}), and (115^{\circ},260^{\circ}), where I1 is the inclination of the planet and \Omega_1 is the longitude of ascending node.Comment: 10 pages, 7 figures. A&A Accepte

    Viscoelasticity near the gel-point: a molecular dynamics study

    Full text link
    We report on extensive molecular dynamics simulations on systems of soft spheres of functionality f, i.e. particles that are capable of bonding irreversibly with a maximum of f other particles. These bonds are randomly distributed throughout the system and imposed with probability p. At a critical concentration of bonds, p_c approximately equal to 0.2488 for f=6, a gel is formed and the shear viscosity \eta diverges according to \eta ~ (p_c-p)^{-s}. We find s is approximately 0.7 in agreement with some experiments and with a recent theoretical prediction based on Rouse dynamics of phantom chains. The diffusion constant decreases as the gel point is approached but does not display a well-defined power law.Comment: 4 pages, 4 figure

    Scale-free center-of-mass displacement correlations in dense polymer solutions and melts without topological constraints and momentum conservation: A bond-fluctuation model study

    Full text link
    By Monte Carlo simulations of a variant of the bond-fluctuation model without topological constraints we examine the center-of-mass (COM) dynamics of polymer melts in d=3d=3 dimensions. Our analysis focuses on the COM displacement correlation function \CN(t) \approx \partial_t^2 \MSDcmN(t)/2, measuring the curvature of the COM mean-square displacement \MSDcmN(t). We demonstrate that \CN(t) \approx -(\RN/\TN)^2 (\rhostar/\rho) \ f(x=t/\TN) with NN being the chain length (16N819216 \le N \le 8192), \RN\sim N^{1/2} the typical chain size, \TN\sim N^2 the longest chain relaxation time, ρ\rho the monomer density, \rhostar \approx N/\RN^d the self-density and f(x)f(x) a universal function decaying asymptotically as f(x)xωf(x) \sim x^{-\omega} with ω=(d+2)×α\omega = (d+2) \times \alpha where α=1/4\alpha = 1/4 for x1x \ll 1 and α=1/2\alpha = 1/2 for x1x \gg 1. We argue that the algebraic decay N \CN(t) \sim - t^{-5/4} for t \ll \TN results from an interplay of chain connectivity and melt incompressibility giving rise to the correlated motion of chains and subchains.Comment: 27 pages, 12 figure

    Fluctuations in granular gases

    Full text link
    A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure
    corecore