536 research outputs found

    Persistence distributions for non gaussian markovian processes

    Full text link
    We propose a systematic method to derive the asymptotic behaviour of the persistence distribution, for a large class of stochastic processes described by a general Fokker-Planck equation in one dimension. Theoretical predictions are compared to simple solvable systems and to numerical calculations. The very good agreement attests the validity of this approach.Comment: 7 pages, 1 figure, to be published in Europhysics Letter

    Magnetic Fluctuations and Correlations in MnSi - Evidence for a Skyrmion Spin Liquid Phase

    Full text link
    We present a comprehensive analysis of high resolution neutron scattering data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which confirm the first order nature of the helical transition and reveal the existence of a new spin liquid skyrmion phase. Similar to the blue phases of liquid crystals this phase appears in a very narrow temperature range between the low temperature helical and the high temperature paramagnetic phases.Comment: 11 pages, 16 figure

    Promoting Queer Competency Through An Experiential Framework

    Get PDF
    Many counselors report feeling under prepared to effectively work with queer persons. Arguably, this can be mitigated through early intervention within training programs. However, many counseling programs do not adequately prepare their students to work with queer persons. To eliminate this gap in training, this article combines endorsed counseling competencies and experiential learning as an approach to enhance counselor queer training and preparation. This approach primarily framed through the Multicultural and Social Justice Counseling Competencies, and further supported through the Competencies for Counseling with LGBQQIA Individuals, and the ALGBTIC Competencies for Counseling with Transgender Clients can create an encompassing curricula and pedagogical framework for counselor educators

    Random pinning limits the size of membrane adhesion domains

    Full text link
    Theoretical models describing specific adhesion of membranes predict (for certain parameters) a macroscopic phase separation of bonds into adhesion domains. We show that this behavior is fundamentally altered if the membrane is pinned randomly due to, e.g., proteins that anchor the membrane to the cytoskeleton. Perturbations which locally restrict membrane height fluctuations induce quenched disorder of the random-field type. This rigorously prevents the formation of macroscopic adhesion domains following the Imry-Ma argument [Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975)]. Our prediction of random-field disorder follows from analytical calculations, and is strikingly confirmed in large-scale Monte Carlo simulations. These simulations are based on an efficient composite Monte Carlo move, whereby membrane height and bond degrees of freedom are updated simultaneously in a single move. The application of this move should prove rewarding for other systems also.Comment: revised and extended versio

    Globular Structures of a Helix-Coil Copolymer: Self-Consistent Treatment

    Full text link
    A self-consistent field theory was developed in the grand-canonical ensemble formulation to study transitions in a helix-coil multiblock globule. Helical and coil parts are treated as stiff rods and self-avoiding walks of variable lengths correspondingly. The resulting field-theory takes, in addition to the conventional Zimm-Bragg (B.H. Zimm, I.K. Bragg, J. Chem. Phys. 31, 526 (1959)) parameters, also three-dimensional interaction terms into account. The appropriate differential equations which determine the self-consistent fields were solved numerically with finite element method. Three different phase states are found: open chain, amorphous globule and nematic liquid-crystalline (LC) globule. The LC-globule formation is driven by the interplay between the hydrophobic helical segments attraction and the anisotropic globule surface energy of an entropic nature. The full phase diagram of the helix-coil copolymer was calculated and thoroughly discussed. The suggested theory shows a clear interplay between secondary and tertiary structures in globular homopolypeptides.Comment: 26 pages, 30 figures, corrected some typo

    Pseudo-boundaries in discontinuous 2-dimensional maps

    Full text link
    It is known that Kolmogorov-Arnold-Moser boundaries appear in sufficiently smooth 2-dimensional area-preserving maps. When such boundaries are destroyed, they become pseudo-boundaries. We show that pseudo-boundaries can also be found in discontinuous maps. The origin of these pseudo-boundaries are groups of chains of islands which separate parts of the phase space and need to be crossed in order to move between the different sub-spaces. Trajectories, however, do not easily cross these chains, but tend to propagate along them. This type of behavior is demonstrated using a ``generalized'' Fermi map.Comment: 4 pages, 4 figures, Revtex, epsf, submitted to Physical Review E (as a brief report

    Parametric phase transition in one dimension

    Full text link
    We calculate analytically the phase boundary for a nonequilibrium phase transition in a one-dimensional array of coupled, overdamped parametric harmonic oscillators in the limit of strong and weak spatial coupling. Our results show that the transition is reentrant with respect to the spatial coupling in agreement with the prediction of the mean field theory.Comment: to appear in Europhysics letter

    Microscopic formulation of the Zimm-Bragg model for the helix-coil transition

    Get PDF
    A microscopic spin model is proposed for the phenomenological Zimm-Bragg model for the helix-coil transition in biopolymers. This model is shown to provide the same thermophysical properties of the original Zimm-Bragg model and it allows a very convenient framework to compute statistical quantities. Physical origins of this spin model are made transparent by an exact mapping into a one-dimensional Ising model with an external field. However, the dependence on temperature of the reduced external field turns out to differ from the standard one-dimensional Ising model and hence it gives rise to different thermophysical properties, despite the exact mapping connecting them. We discuss how this point has been frequently overlooked in the recent literature.Comment: 11 pages, 2 figure

    Different faces of the phantom

    Full text link
    The SNe type Ia data admit that the Universe today may be dominated by some exotic matter with negative pressure violating all energy conditions. Such exotic matter is called {\it phantom matter} due to the anomalies connected with violation of the energy conditions. If a phantom matter dominates the matter content of the universe, it can develop a singularity in a finite future proper time. Here we show that, under certain conditions, the evolution of perturbations of this matter may lead to avoidance of this future singularity (the Big Rip). At the same time, we show that local concentrations of a phantom field may form, among other regular configurations, black holes with asymptotically flat static regions, separated by an event horizon from an expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200
    • …
    corecore