3 research outputs found

    Tumor Risk in Disorders of Sex Development

    Get PDF
    Certain patients with disorders of sex development (DSD), who bear Y chromosome material in their karyotype, are at increased risk for the development of type II germ cell tumors (GCT), which arise from early fetal germ cells. DSD gonads frequently harbor immature germ cells which express early fetal germ cell markers. Some of them (e.g. OCT3/4 and NANOG) seem to be of pathogenetic relevance in GCT development providing cells with the ability of pluripotency,proliferation and apoptosis suppression. Also TSPY (testisspecific protein Y-encoded), the main candidate for the socalled gonadoblastoma locus on Y chromosome, is overexpressed in germ cells of DSD patients and possibly contributes to their survival and proliferation. Nowadays, the use of immunohistochemical methods is highly relevant in identifying DSD gonads at risk. The risk for GCT development varies. While the prevalence of GCT is 15% in patients with partial androgen insensitivity, it may reach more than 30% in patients with gonadal dysgenesis. Patients with complete androgen insensitivity and ovotesticular DSD develop ma lignancies in 0.8% and 2.6% of cases, respectively. However,these data may be biased for various reasons. To better estimate the risk in individual groups of DSD, further investigations on large patient series are needed

    Distribution of AGG interruption patterns within nine world populations

    No full text
    The CGG trinucleotide repeat within the FMR1 gene is associated with multiple clinical disorders, including fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X syndrome. Differences in the distribution and prevalence of CGG repeat length and of AGG interruption patterns have been reported among different populations and ethnicities. In this study we characterized the AGG interruption patterns within 3,065 normal CGG repeat alleles from nine world populations including Australia, Chile, United Arab Emirates, Guatemala, Indonesia, Italy, Mexico, Spain, and United States. Additionally, we compared these populations with those previously reported, and summarized the similarities and differences. We observed significant differences in AGG interruption patterns. Frequencies of longer alleles, longer uninterrupted CGG repeat segments and alleles with greater than 2 AGG interruptions varied between cohorts. The prevalence of fragile X syndrome and FMR1 associated disorders in various populations is thought to be affected by the total length of the CGG repeat and may also be influenced by the AGG distribution pattern. Thus, the results of this study may be important in considering the risk of fragile X-related conditions in various populations
    corecore