4 research outputs found

    Differential brain and spinal cord cytokine and BDNF levels in experimental autoimmune encephalomyelitis are modulated by prior and regular exercise

    Get PDF
    The interactions between a prior program of regular exercise and the development of experimental autoimmune encephalomyelitis (EAE)-mediated responses were evaluated. in the exercised EAE mice, although there was no effect on infiltrated cells, the cytokine and derived neurotrophic factor (BDNF) levels were altered, and the clinical score was attenuated. Although, the cytokine levels were decreased in the brain and increased in the spinal cord, BDNF was elevated in both compartments with a tendency of lesser demyelization volume in the spinal cord of the exercised EAE group compared with the unexercised. (C) 2013 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)NIHUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Fisiol & Biofis, Nucleo Neurociencias, BR-31270901 Belo Horizonte, MG, BrazilMinist Educ Brazil, CAPES Fdn, Programa Pos Grad Ciencias Biol Fisiol Farmacol, BR-70040020 Brasilia, DF, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Patol, BR-31270901 Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, Dept Biofis, BR-04023062 São Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Bioquim & Imunol, Lab Venenos & Toxinas Anim, BR-31270901 Belo Horizonte, MG, BrazilUniv Miami, Miller Sch Med, Miami Project Cure Paralysis, Miami, FL 33136 USALa Trobe Univ, Dept Biochem, Bundoora, Vic 3086, AustraliaUniversidade Federal de São Paulo, Dept Biofis, BR-04023062 São Paulo, BrazilCAPES: BEX 0020/12-5NIH: NS051709NIH: NS065479FAPEMIG: CBB-APQ-01459-10FAPEMIG: PPM-00200-12Web of Scienc

    Estudo da cinética da translocação do fator de crescimento epidermal (EGF) para o núcleo e da sua localização subnuclear em células-tronco mesenquimais e em células tumorais da linhagem SK-HEP-1

    No full text
    Submitted by Caroline Paula ([email protected]) on 2020-01-07T13:32:24Z No. of bitstreams: 1 Dissertação Camila Faraco_VERSÃO FINAL.pdf: 4091401 bytes, checksum: aa2994655c404b256f4e7c8da01561d7 (MD5)Approved for entry into archive by Camila Silva ([email protected]) on 2020-01-15T20:10:38Z (GMT) No. of bitstreams: 1 Dissertação Camila Faraco_VERSÃO FINAL.pdf: 4091401 bytes, checksum: aa2994655c404b256f4e7c8da01561d7 (MD5)Made available in DSpace on 2020-01-20T12:28:24Z (GMT). No. of bitstreams: 1 Dissertação Camila Faraco_VERSÃO FINAL.pdf: 4091401 bytes, checksum: aa2994655c404b256f4e7c8da01561d7 (MD5) Previous issue date: 2017-02-23CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorO fator de crescimento epidermal (EGF) ativa, por interação com seu receptor (EGFR), vias de sinalização celulares importantes como: proliferação, migração, diferenciação e tumorigênese. Esse receptor pode ser encontrado no núcleo, onde exerce funções relacionadas à síntese e reparo de DNA, à regulação transcricional e a processos oncológicos. A presença de EGFR no núcleo tem sido associada a um pior prognóstico em pacientes com câncer e ao desenvolvimento de resistência aos tratamentos. Modelos que caracterizam a translocação do receptor estimulado por ligante para o núcleo foram estabelecidos. No entanto, a cinética dessa translocação e a sua comparação entre diferentes tipos celulares tem sido pouco estudada. Os componentes nucleares envolvidos nesse tráfego também foram pouco explorados. Diante disso, avaliamos a cinética de translocação do EGF para o núcleo em célulastronco mesenquimais derivadas de tecido adiposo humano (hASC) e em células tumorais SK-HEP-1, linhagem com características mesenquimais. Células estimuladas por 5, 10, 20 e 40 minutos com EGF conjugado a Alexa Fluor® 488 foram analisadas por microscopia de superresolução, e imagens de seções ópticas em série foram adquiridas para a quantificação do número e do volume de clusters (aglomerados) de EGF no núcleo em cada tempo. Foi observado que a cinética de translocação difere entre os dois tipos celulares, uma vez que as hASC aparentam atingir equilíbrio de translocação em 10 minutos de estímulo, enquanto nas SK-HEP-1 a translocação continua ocorrendo em tempos posteriores. Verificamos que os clusters de EGF parecem se aglomerar no núcleo com o aumento do tempo de estímulo, o que sugere localizações subnucleares específicas para esse seu receptor. Ao analisarmos a presença de EGF em duas organelas nucleares, o retículo nucleoplasmático e o nucléolo, observamos que alguns clusters se localizam em ambas. Essa análise sugere que o retículo nucleoplasmático esteja envolvido no mecanismo de translocação de EGFR para o núcleo e que este receptor desempenhe funções específicas no nucléolo. Outros clusters se encontram distribuídos difusamente no nucleoplasma, o que sugere que o EGFR possa estar em outras organelas nucleares. Os resultados indicam que o estudo da translocação do EGF e de sua localização subnuclear em diferentes células pode contribuir para desvendar mecanismos associados às funções que seu receptor ativado desempenham no núcleo.By interacting with its receptor (EGFR), epidermal growth factor (EGF) activates cell signaling pathways involving proliferation, migration, differentiation and tumourigenesis. This receptor can be found in cell nucleus, where it has functions in DNA synthesis and repair, transcriptional regulation and oncological processes. Nuclear EGFR has been associated with a worse prognosis and with treatment resistance in cancer patients. Models that characterize the translocation of ligandstimulated receptor to the nucleus have been established. However, the kinetics of this translocation and its comparison between different cell types is not well studied. Furthermore, little is known about the nuclear components involved in this traffic. Thus, we evaluated the EGF translocation kinetics to the nucleus in human adipose tissuederived mesenchymal stem cells (hASC) and in SK-HEP-1 tumor cells, which have mesenchymal characteristics. Cells were stimulated by EGF conjugated to Alexa Fluor® 488 for 5, 10, 20 and 40 minutes and they were analyzed by superresolution microscopy. Images of serial optical sections were acquired to quantify the number and volume of EGF clusters in the nucleus at each stimulation time. We observed that the kinetics of EGF translocation differs between the two cell types, since hASC appear to achieve translocation equilibrium within 10 minutes of stimulation while in SK-HEP-1 cells the translocation continues to occur at later times. We verified that EGF clusters appear to assemble in the cell nucleus at later times, which suggests specific subnuclear localizations for this receptor. When we analyzed the presence of EGF in two nuclear organelles, the nucleoplasmic reticulum and the nucleolus, we observed that some clusters are located in both. This suggests that the nucleplasmic reticulum may be involved in the mechanism of EGFR translocation to the nucleus and that this receptor performs specific functions in the nucleolus. Some clusters were diffusely scattered in the nucleoplasm, suggesting that EGFR may also be in other nuclear organelles. These results indicate that the study of EGF translocation and its subnuclear localization in different cell types can contribute to unravel mechanisms related to EGFR functions in the cell nucleus

    Extracellular Vesicles from Adipose-Derived Mesenchymal Stem/Stromal Cells Accelerate Migration and Activate AKT Pathway in Human Keratinocytes and Fibroblasts Independently of miR-205 Activity

    No full text
    Mesenchymal stem/stromal cells (MSCs) are promising tools in cell therapy. They secrete extracellular vesicles (EVs) that carry different classes of molecules that can promote skin repair, but the mechanisms are poorly understood. Skin wound healing is a complex process that requires the activity of several signaling pathways and cell types, including keratinocytes and fibroblasts. In this study, we explored whether adipose tissue MSC-derived EVs could accelerate migration and proliferation of keratinocytes and fibroblasts, activate the AKT pathway, and promote wound healing in vivo. Furthermore, we evaluated if EV effects are miR-205 dependent. We found that MSC EVs had an average diameter of 135 nm. Keratinocytes and fibroblasts exposed to EVs exhibited higher levels of proliferation, migration, and AKT activation. Topical administration of EVs accelerated skin wound closure. Knockdown of miR-205 decreased AKT phosphorylation in fibroblasts and keratinocytes, whereas migration was decreased only in keratinocytes. Moreover, knockdown of miR-205 failed to inhibit AKT phosphorylation in fibroblasts and keratinocytes exposed to EVs. About the mechanism of EV effects, we found that incubation with EVs prevented inhibition of AKT activation by miR-205 knockdown, suggesting that EVs activate AKT independently of miR-205. In conclusion, we demonstrated that EVs are a promising tool for wound healing
    corecore