355 research outputs found

    A NEW SHORT VERSION OF INTERNET GAMING DISORDER-20: AN EXPLORATORY STRUCTURAL EQUATION MODELING

    Get PDF
    Objective: The purpose of this paper was to contribute to the psychometric properties and dimensionality of the IGD-20. Method: An online survey was completed by 392 Italian online gamers (Mage = 29.2, SD = 11.3; 45.2% males). A battery of self-report questionnaires was administered to assess internet gaming disorder, internet addiction, loneliness, anxiety, depression, stress, social-interaction anxiety, self-esteem, and perceived social support. To test the factor structure of IGD-20, both traditional (i.e., EFA and CFA) and innovative (i.e., ESEM) techniques were applied. Convergent, concurrent, discriminant, and criterion-related validity were evaluated. Results: Our study revealed the outperforming 3-factor ESEM model (χ2=39.951, p = 0.0021; RMSEA = 0.056, 90% C.I. [0.032 - 0.079]; CFI = 0.986; TLI = 0.965; and SRMR = 0.017; ω = .76, .77, and .79, respectively) as a new short version (IGD- 10SV) for the IGD-20. The validity of the IGD-10SV was supported by significant associations with theoretically related measures. Conclusions: The current findings support the adoption of the analytic ESEM approach for complex multidimensional measures and the use of the IGD-10SV for the assessment of internet gaming disorder

    Angular correlation of scattered annihilation photons, to test the possibility of hidden variables in quantum theory

    Get PDF
    Angular correlations of the annihilation photons, Compton scattered by plastic scintillators and detected by means of NaI (T1) crystals, have been measured in order to test the possibility of deviations of the experimental results from the predictions of the quantum theory

    Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation

    Get PDF
    Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects

    Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating

    Full text link
    We model the photoelectric emission from and charging of interstellar dust and obtain photoelectric gas heating efficiencies as a function of grain size and the relevant ambient conditions. Using realistic grain size distributions, we evaluate the net gas heating rate for various interstellar environments, and find less heating for dense regions characterized by R_V=5.5 than for diffuse regions with R_V=3.1. We provide fitting functions which reproduce our numerical results for photoelectric heating and recombination cooling for a wide range of interstellar conditions. In a separate paper we will examine the implications of these results for the thermal structure of the interstellar medium. Finally, we investigate the potential importance of photoelectric heating in H II regions, including the warm ionized medium. We find that photoelectric heating could be comparable to or exceed heating due to photoionization of H for high ratios of the radiation intensity to the gas density. We also find that photoelectric heating by dust can account for the observed variation of temperature with distance from the galactic midplane in the warm ionized medium.Comment: 50 pages, including 18 figures; corrected title and abstract field

    Enzyme replacement reverses abnormal cerebrovascular responses in Fabry disease

    Get PDF
    BACKGROUND: Fabry disease is a lysosomal X-linked enzyme deficiency of α-galactosidase A associated with an increased mortality and morbidity due to renal failure, cardiac disease and early onset stroke. METHODS: We examined the functional blood flow response of the brain after visual stimulation (reversing checkerboard pattern), and cerebral vasoreactivity following acetazolamide (15 mg/kg) with [(15)O]H(2)O and positron emission tomography (PET) in Fabry disease. Twenty-six hemizygous patients (age range 19–47 years) were enrolled in a randomized double-blind placebo-controlled 6-month trial of enzyme replacement therapy administered by intravenous infusion every two weeks. Regional cerebral blood flow (rCBF) was measured with PET at the beginning and end of the trial. RESULTS: Fabry patients had a significantly greater increase in rCBF following visual stimulation and acetazolamide challenge compared to controls. Visual reactivity was normal. The time for recovery of the cerebral vasculature following acetazolamide was prolonged in Fabry patients compared to controls. The abnormal rCBF response induced by visual stimulation and acetazolamide decreased significantly following enzyme replacement therapy, as did the prolonged recovery of the cerebral vasculature. CONCLUSIONS: Enzyme replacement therapy reverses the exaggerated cerebrovascular response in Fabry disease

    Interference With PPAR  Signaling Causes Cerebral Vascular Dysfunction, Hypertrophy, and Remodeling

    Get PDF
    The transcription factor PPARgamma is expressed in endothelium and vascular muscle where it may exert antiinflammatory and antioxidant effects. We tested the hypothesis that PPARgamma plays a protective role in the vasculature by examining vascular structure and function in heterozygous knockin mice expressing the P465L dominant negative mutation in PPARgamma (L/+). In L/+ aorta, responses to the endothelium-dependent agonist acetylcholine (ACh) were not affected, but there was an increase in contraction to serotonin, PGF(2alpha), and endothelin-1. In cerebral blood vessels both in vitro and in vivo, ACh produced dilation that was markedly impaired in L/+ mice. Superoxide levels were elevated in cerebral arterioles from L/+ mice and responses to ACh were restored to normal with a scavenger of superoxide. Diameter of maximally dilated cerebral arterioles was less, whereas wall thickness and cross-sectional area was greater in L/+ mice, indicating cerebral arterioles underwent hypertrophy and remodeling. Thus, interference with PPARgamma signaling produces endothelial dysfunction via a mechanism involving oxidative stress and causes vascular hypertrophy and inward remodeling. These findings indicate that PPARgamma has vascular effects which are particularly profound in the cerebral circulation and provide genetic evidence that PPARgamma plays a critical role in protecting blood vessels
    corecore