601 research outputs found

    Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation

    Get PDF
    Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects

    Cerebrovascular reactivity and cerebral perfusion of rats with acute liver failure: role of L-glutamine and asymmetric dimethylarginine in L-arginine-induced response

    Get PDF
    Cerebral blood flow (CBF) is impaired in acute liver failure (ALF), however, the complexity of the underlying mechanisms has often led to inconclusive interpretations. Regulation of CBF depends at least partially on variations in the local brain L‐arginine concentration and/or its metabolic rate. In ALF, other factors, like an increased concentration of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor and elevated level of L‐glutamine, may contribute to CBF alteration. This study demonstrated strong differences in the reactivity of the middle cerebral arteries and their response to extravascular L‐arginine application between vessels isolated from rats with thioacetamide (TAA)‐induced ALF and control animals. Our results also showed the decrease in the cerebral perfusion in TAA rats measured by arterial spin labeling perfusion magnetic resonance. Subsequently, we aimed to investigate the importance of balance between the concentration of ADMA and L‐arginine in the CBF regulation. In vivo, intraperitoneal L‐arginine administration in TAA rats corrected: (i) decrease in cerebral perfusion, (ii) decrease in brain extracellular L‐arginine/ADMA ratio and (iii) increase in brain L‐glutamine concentration. Our study implicates that impaired vascular tone of cerebral arteries is most likely associated with exposure to high ADMA and L‐glutamine levels resulting in limited availability of L‐arginine and might be responsible for reduced cerebral perfusion observed in AL

    Haploidentical α/β T-cell and B-cell Depleted Stem Cell Transplantation in Severe Mevalonate Kinase Deficiency

    Get PDF
    Objective: Mevalonic aciduria represents the most severe form of mevalonate kinase deficiency (MKD). Patients with mevalonic aciduria have an incomplete response even to high doses of anti-cytokine drugs such as anakinra or canakinumab and stem cell transplantation (SCT) represents a possible therapy for this severe disease. Methods: We report the first two children affected by severe MKD who received haploidentical α/β T-cell and B-cell depleted SCT. Both patients received a treosulfan-based conditioning regimen and one received a second haploidentical-SCT for secondary rejection of the first. Results: Both patients obtained a stable full donor engraftment with a complete regression of clinical and biochemical inflammatory signs, without acute organ toxicity or acute and chronic GvHD. In both, the urinary excretion of mevalonic acid remained high post-transplant in the absence of any inflammatory signs. Conclusion: Haploidentical α/β T-cell and B-cell depleted SCT represents a potential curative strategy in patients affected by MKD. The persistence of urinary excretion of mevalonic acid after SCT, probably related to the ubiquitous expression of MVK enzyme, suggests that these patients should be carefully monitored after SCT to exclude MKD clinical recurrence. Prophylaxis with anakinra in the acute phase after transplant could represent a safe and effective approach. Further biological studies are required to clarify the pathophysiology of inflammatory attacks in MKD in order to better define the therapeutic role of SCT.info:eu-repo/semantics/publishedVersio

    Precision measurements of Linear Scattering Density using Muon Tomography

    Full text link
    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.Comment: 16 pages, 4 figure

    Quantum Mechanics and Leggett's Inequalities

    Full text link
    We show that when the proper description of the behaviour of individual photons or spin 1/2 particles in a spherically symmetric entangled pair is done through the use of the density matrix, the Leggett's inequality is not violated by quantum mechanics.Comment: 7 pages, no figures. A missing global sign in the r.h.s. of eq. (4.10) in section 4 of version 1 (v1) invalidates the conclusion of that particular section, which is then suppressed in the present version (v2

    Thermal effects on electron-phonon interaction in silicon nanostructures

    Full text link
    Raman spectra from silicon nanostructures, recorded using excitation laser power density of 1.0 kW/cm^2, is employed here to reveal the dominance of thermal effects at temperatures higher than the room temperature. Room temperature Raman spectrum shows only phonon confinement and Fano effects. Raman spectra recorded at higher temperatures show increase in FWHM and decrease in asymmetry ratio with respect to its room temperature counterpart. Experimental Raman scattering data are analyzed successfully using theoretical Raman line-shape generated by incorporating the temperature dependence of phonon dispersion relation. Experimental and theoretical temperature dependent Raman spectra are in good agreement. Although quantum confinement and Fano effects persists, heating effects start dominating at higher temperatures than room tempaerature.Comment: 9 Pages, 3 Figures and 1 Tabl
    corecore