361 research outputs found

    Changes in Balance Measures During a Pedometer-Based Senior Citizen Walking Program

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Effect of a Walking Program on Functional Fitness Measures in Older Adults

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Changes in Balance Measures During a Six-Month Senior Citizen Walking Program

    Get PDF
    Please see the pdf version of the abstract

    Effects of a Six-Month Walking Intervention on the Physical Activity Measures Among Older Adults

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Comparing Short Physical Performance Battery Results in Active vs. Non-Active Geriatric Individuals

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Recoding of Translation in Turtle Mitochondrial Genomes: Programmed Frameshift Mutations and Evidence of a Modified Genetic Code

    Get PDF
    A +1 frameshift insertion has been documented in the mitochondrial gene nad3 in some birds and reptiles. By sequencing polyadenylated mRNA of the chicken (Gallus gallus), we have shown that the extra nucleotide is transcribed and is present in mature mRNA. Evidence from other animal mitochondrial genomes has led us to hypothesize that certain mitochondrial translation systems have the ability to tolerate frameshift insertions using programmed translational frameshifting. To investigate this, we sequenced the mitochondrial genome of the red-eared slider turtle (Trachemys scripta), where both the widespread nad3 frameshift insertion and a novel site in nad4l were found. Sequencing the region surrounding the insertion in nad3 in a number of other turtles and tortoises reveal general mitochondrial +1 programmed frameshift site features as well as the apparent redefinition of a stop codon in Parker’s snake-neck turtle (Chelodina parkeri), the first known example of this in vertebrate mitochondria

    A comparison of transgenic rodent mutation and in vivo comet assay responses for 91 chemicals.

    Get PDF
    A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals

    Preliminary evidence for signature vocalizations among free-ranging narwhals (Monodon monoceros)

    Get PDF
    Author Posting. © Acoustical Society of America, 2006. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 120 (2006): 1695-1705, doi:10.1121/1.2226586.Animal signature vocalizations that are distinctive at the individual or group level can facilitate recognition between conspecifics and re-establish contact with an animal that has become separated from its associates. In this study, the vocal behavior of two free-ranging adult male narwhals (Monodon monoceros) in Admiralty Inlet, Baffin Island was recorded using digital archival tags. These recording instruments were deployed when the animals were caught and held onshore to attach satellite tags, a protocol that separated them from their groups. The signature content of two vocal categories was considered: (1) combined tonal/pulsed signals, which contained synchronous pulsatile and tonal content; (2) whistles, or frequency modulated tonal signals with harmonic energy. Nonparametric comparisons of the temporal and spectral features of each vocal class revealed significant differences between the two individuals. A separate, cross-correlation measure conducted on the whistles that accounted for overall contour shape and absolute frequency content confirmed greater interindividual compared to intraindividual differences. These data are consistent with the hypothesis that narwhals produce signature vocalizations that may facilitate their reunion with group members once they become separated, but additional data are required to demonstrate this claim more rigorously.I thank the WHOI Academic Programs office, the National Science Foundation Research Fellowship, and the National Defense Science and Engineering Graduate Fellowship for financial support. This field operation was funded by the Greenland Institute of Natural Resources, the National Environmental Research Institute, Department of Fisheries and Oceans, Nunavut Wildlife Management Board and the Danish Cooperation for the Environment in the Arctic (DANCEA). Additional logistical support was provided by the Polar Continental Shelf Project
    corecore