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A B S T R A C T

A database of the micronuclei counts was built up for historical negative control data from human lymphocyte in
vitro micronuclei tests (MnVit) carried out in 8 laboratories with experience of the method. The mean incidence
of micronucleated cells (mnt)/1000 cells ranged from 2.2/1000 to 15.9/1000. There were no large differences in
incidence between the presence or absence of S9 mix or between different treatment lengths. There was also
little evidence that different solvents affected the numbers of micronuclei appreciably. A number of laboratories
did show significant inter-experiment variability, indicating that there remained unidentified factors affecting
frequencies. Donor variance may be one such factor. Inter-individual variability may explain some of these
differences. The approximate 7.5-fold difference in mnt/1000 scores in a relatively small group of experienced
laboratories illustrates the potential complications that can arise if a metric like a fold increase was considered
the only biologically important finding. Although there is inherent variability between experiments, it was
evident that within a laboratory the overall laboratory mean remains constant over time. It is believed that these
findings will provide help to laboratories conducting studies using human lymphocytes in the MnVit and to those
involved in the assessment of MnVit results.

1. Introduction

The revised Organisation for Economic Cooperation and
Development (OECD) guidelines [1] emphasised a more important role
for historical negative control data in the analysis and interpretation of
in vitro micronucleus assays. The guidance has indicated that compar-
ison of individual study results with a laboratory’s historical negative
control data should form part of result evaluation and laboratories are
encouraged to build up a data set of negative control data to provide
evidence of their competence with the test [2]. Negative controls in this
context are samples treated with just the solvent or vehicle used with
the test article.

The ILSI/HESI Genetic Toxicology Technical Committee (GTTC)
Data Interpretation Workgroup initiated a project to collect and collate
sets of data from established and experienced laboratories into a stan-
dardized database. This analysis and publication are intended to pro-
vide high quality negative control data from genotoxicity tests carried
out under OECD guidelines. This group has previously reported on the
negative control data from a set of in vitro micronuclei studies from a
series of experienced laboratories using TK6 cells; this paper also pro-
vides additional background to the GTTC Data Interpretation project
[3].

The analysis of TK6 historical micronuclei control data showed that
there was appreciable variability between laboratories, concluded that
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the information on the variables that differed between studies did not
explain this variability and provided support to the OECD proposal to
increase the numbers of cells scored to 2000 in part to reduce the
possibility of zero counts.

In the current paper, a similar analysis has been carried out using a
data set created from data provided by a set of 8 laboratories with
experience in the use of human lymphocytes for the in vitro micro-
nucleus test.

The human lymphocyte micronucleus test is an established method
used both in epidemiological investigations [4] and in the in vitro mi-
cronucleus test [5]. Human lymphocytes have the advantage that they
are primary human cells which are relatively easy to culture in sus-
pension. The use of isolated lymphocytes means that the ratio of ery-
throcytes to lymphocytes is very different compared with the use of
whole blood with a consequent reduction on hemoglobin as potential
target for chemicals. Detailed protocols for the in vitromicronucleus test
have been produced by the HUMN consortium [6] which has provided a
vehicle for collaboration in the use of the assay in human epidemiolo-
gical studies [4]. OECD test guideline 487 has also provided re-
commendations for the conduct of the assay [1].

2. Material and methods

Data were collected from laboratories recruited by the GTTC fol-
lowing requests for relevant data sent to laboratories that were con-
sidered to have experience in using human lymphocytes in their assays.
Eight laboratories (4 from the USA, 1 from Japan and 3 from Europe)
participated. All the laboratories used manual scoring methods, in ad-
dition one laboratory (Lab D) used an image analysis system for a se-
parate set of 52 replicates. One company provided data from two la-
boratories (one sited in Europe, the other in the USA). This company
provided its data from each site as separate datasets for male and fe-
male donors. In all, 10 data sets (identified as A–J) were collected from
8 laboratories representing 7 independent organisations (with 4 data-
sets from one company).

All the laboratories had carried out their experiments using three
different S9 conditions (−S9 short (approx. 4 h treatment+ 20 h re-
covery), +S9 short (approx. 4+20 h) and –S9 long (approx. 24+0 h))
except for Laboratory A which did not carry out any experiments using
the –S9 short combination.

Experiments were mainly carried out between 2012 and 2015. One
laboratory (A), however, provided data from a series for 1997–2000.
Lab A was included because they had considerable experience of using
the test and a large historical database.

Most laboratories completed a short questionnaire on laboratory
conditions. The data provided showed that staining was by acridine
orange (5 labortories), DifQuik (1) or Giemsa (2). All the laboratories
used cytochalasin B (CytoB).

One company provided separate data sets from blood pooled from 2
male or 2 female donors 18–35 years old (UK site) or reported that each
study used a single blood sample from an 18–35 year old donor (US
site). The other laboratories reported a variety of different sources for
the donors:

• <45 years, both males and females

• Age 18–35 years, male and/or female, blood pooled from two do-
nors

• Either pooled or single blood samples from 18 year or older male
non-smoker

• Single blood samples from male donors age 21–35

Where a range of donors was used these could not be identified with
the specific study results. All laboratories reported the use of phyto-
haemagglutinin (PHA) stimulations.

S9 used in most studies was from rats with the inducer used being
Aroclor (6 laboratories), phenobarbital/beta-naphthoflavone (PB/BNF)

(2 laboratories).
In general, each study consisted of a set of three experiments, one

for each of the three S9 duration conditions. Each experiment consisted
of two replicates with either 1000 or 2000 cells per replicate. Data were
subsequently converted to micronucleated cells (mnt)/1000 cells scored
to allow comparisons between laboratories. One laboratory (Lab D)
reported the results derived from scoring 2000 cells for two replicates
as a single value of mnt/1000 cells.

Solvents employed were mainly dimethyl sulphoxide (DMSO) and
water. One laboratory (J) used a large range of solvents, including:
DMSO (25), Ethanol (5), ‘Untreated’ (5), Saline (1), phosphate buffered
saline (PBS) (2), Water (5), and dimethylformamide (DMF) (1).

2.1. A description of data collected

Data were collected using a specially designed Excel spreadsheet
similar to that used previously [3].

Results were obtained and examined for three main types of ex-
periments: a short treatment in the absence of S9 followed by a re-
covery period (−S9 short), a short treatment in the presence of S9
followed by a recovery period (+S9 short) and a long treatment in the
absence of S9 without recovery (−S9 long). All the laboratories re-
ported that the duration of treatment was 3–4 h for the short treatment
with a recovery period of 20–21 h. For the long treatment, they re-
ported a 24 h treatment with either a 0 h or 24 h recovery period.

Some studies were described as experiments using all three S9/
duration conditions. In others, it was not clear whether the experiments
were from a study with only one condition or more. This limited formal
statistical analyses across experimental conditions within a single
study.

Most of the data provided was in the form of the number of mi-
cronucleated cells together with the number of cells scored for each
replicate. Most of the laboratories, with the exception of Lab D, pro-
vided data on replicate samples within an experiment. Many labora-
tories reported counts on 1000 cells. In the case of some laboratories
(Labs C and E) the number of cells scored were either 1000 or 2000
cells/replicate. In these cases, the data were converted to a frequency of
micronucleated cells/1000 cells. The total number of replicates across
all conditions scored by the laboratories was 1630 and ranged from 42
for Lab I to 373 for Lab D. There were a small number of cases where
more than two replicates were scored in an experiment. Lab C reported
many experiments with 4 replicates and with 10 replicates in at least
one case.

No restriction was placed upon the amount of data that could be
submitted other than that laboratories were expected to provide data
from a minimum of 20 experiments. One complication was that in some
cases there were very few experiments performed with a particular
solvent (Lab J, for example, included some studies on a specific solvent
with just 2 replicates). These numbers were considered acceptable be-
cause they could be combined. However, this limited a determination of
whether there were appreciable effects on frequencies from different
solvents.

Lab D carried out two separate series of studies: one using manual
and the other using an image analysis system, both with scores based
upon 2000 cells combined over two replicates and the results expressed
as micronucleated cells/1000 cell.

2.2. Statistical methods

The methods used in this analysis were broadly based upon those
reported in the previous paper [3]. Data were analysed using the sta-
tistical procedures available in Minitab (Minitab 16 Statistical Software.
Minitab, Inc., State College, PA) and the R statistical programming
language [7].

Data were analysed as counts if the data were from replicates of
exactly 1000 cells. Alternatively, if the number of cells scored were not
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exactly 1000 then analyses were done on the number of micronucleated
cells/1000 cells scored.

The procedures used were: one-way and nested analyses of var-
iances, tests for extra-binomial variation (i.e. Goodness of fit to a
Poisson distribution), correlations between S9 conditions within the
same study (where applicable) and the calculation of tolerance inter-
vals.

A number of QC methods were used: C-Charts for Poisson counts, I-
Charts for individual replicate values of counts or proportions of mi-
cronucleated cells and X-bar Charts when there were a number of re-
plicates per experiment. (See Lovell et al. [3] for details on the inter-
pretation of these charts). Detailed results of many of these analyses can
be found in the Supplementary material.

The anovas were carried out on untransformed 'counts' or propor-
tions. These gave satisfactory results for the types of exploratory ana-
lyses carried out.

3. Results

Data from all the participating laboratories were considered ac-
ceptable for inclusion in the analyses reported. The quality of the data
provided was sufficient and the laboratories were diligent in their
presentation of the data in a standard format for all the sets of treatment
conditions.

The data sets from the 8 laboratories (anonymized as A to J) were
broken down into 35 combinations of the various ± S9 and treatment
times. Table 1 shows the mean and standard deviations (SD) for each of
these 35 combinations. The summary results in different formats are
presented in the Supplementary material section to help make further

comparisons within and between the laboratories.
Fig. 1 shows the mean and standard deviation for each of the 35

combinations and provides an indication of the relative variability be-
tween each set of replicates. Fig. 2 gives the mean and its associated
95% confidence interval (CI) for each set. This figure shows the preci-
sion associated with the mean values and the widths of the CIs reflect in
part the numbers of replicates. Combinations where the n is small will
generally have wide CIs. Table 1 shows that 7 combinations had less
than 20 replicates.

The means for cells scored ranged from 2.2 to 15.9 /1000. In gen-
eral, the variability within the laboratories was appreciably less than
between laboratories which can be seen in Fig. 3. There were significant
(P < 0.001) differences between laboratories compared with intra-
laboratory differences in a one-way anova of the 35 combination
means. The mean values for the 35 combinations were 6.6/1000 (SD
3.31/1000). Figs. 4–8 show the distribution of the means and individual
values. There is some indication of a skew to the right with a small
number of outlying results (especially from laboratories A and H which
have high mean scores (11.5–15.9/1000) while Lab J has low mean
scores (between 2–3/1000). Therefore, there is a 5 to 7-fold difference
between the results from experienced laboratories.

Data from Labs A and H also seem to be quite variable, i.e. they have
large SDs. However, this may, in part, reflect that the mean and var-
iance of Poisson distributed data will, theoretically, be identical, i.e. the
SD will increase with the mean. None of the results can be ruled out as
unacceptable. The mean counts from Lab A which came from samples
which were collected around 2000 are high but have been included in
the analysis as they are similar to those from Lab H. Lab A stopped
using human lymphocytes in 2000 and moved on to using CHO WBL
and TK6 cells It is possible that the higher values reported by them are
consistent with reports that frequencies are now lower because of im-
proved culture condition or media.

Fig. 1 also shows a distribution of the means by the length of
treatment with ‘short’ being shown in black and ‘long’ in grey. Simi-
larly, Fig. 2 shows a distribution of the means based upon the presence
or absence of S9 (+S9 or−S9) with presence of S9 being shown in grey
and absence of S9 in black. There are no striking differences apparent in
these figures between the three conditions indicating that there is little
evidence that the presence or absence of S9 or short or long treatment
time affected the incidence of micronucleated cells. Analyses show that
differences between the conditions can be identified as statistically
significant in an anova within Lab A. However, the effects are small and
probably below the level of effect that might be considered biologically
important and more a reflection of the statistical power possible with
the number of samples analysed. In the case of some laboratories it was
possible to compare frequencies across the different S9 conditions
within the same experiment. In these case there were large and highly
significant correlations between the scores from the different S9 con-
ditions (see Supplementary material).

The majority of the data from the laboratories were based upon
1000 cells scored from each of 2 replicates cultures; or, in some cases
2000 cells. Most results were from duplicate cultures. (Lab D did not
report the individual counts of the duplicate cultures). In all 35 of the
1630 counts across the treatment combinations, were zero. All the la-
boratories had a small number of zeros: (A 2; B 6; C 3; D 6; E 3; F 3; G 3;
H 3; I 3; J 3)

The effects of other laboratory-associated variables is somewhat
difficult to assess because of the small number of participants.

Only one laboratory (Lab D) used a non-manual method. There were
appreciable differences between the scores using the manual analysis
(8.1–9.6/1000) for three conditions for manual compared with
5.4–7.0/1000 for the image analysis (Table 2). Counts were made using
the different methods on different samples. The image analysis was
carried out more recently and although there was a large reduction
(approx. 30%) in counts using image analysis there may be other fac-
tors/confounders affecting these results.

Table 1
Summary table of results from 35 conditions from the different datasets pro-
vided by 10 laboratories.

Row Lab Combination N Mean SD Vehicle S9 Time

1 A AS9+Sn_ 14 11.57 3.11 DMSO +S9 Short
2 A AS9-Ln_ 35 15.94 4.70 DMSO −S9 Long
3 B B1S9-Sn_ 23 5.22 1.98 Water −S9 Short
4 B B1S9+Sn_ 24 4.96 2.60 Water +S9 Short
5 B B1S9-Ln_ 24 5.71 3.62 Water −S9 Long
6 B B2S9-Sn_ 80 6.17 2.62 DMSO −S9 Short
7 B B2S9+Sn_ 80 6.33 2.73 DMSO +S9 Short
8 B B2S9-Ln_ 80 7.28 2.49 DMSO −S9 Long
9 C C1S9+Sn_ 98 4.62 2.69 DMSO +S9 Short
10 C C2S9-Sn_ 66 4.70 3.17 DMSO −S9 Short
11 C C3S9-Ln_ 74 4.45 2.72 DMSO −S9 Long
12 D D1S9-Sn_ 36 9.58 3.45 DMSO −S9 Short
13 D D1S9+Sn_ 94 9.13 3.32 DMSO +S9 Short
14 D D1S9-Ln_ 117 8.11 3.27 DMSO −S9 Long
15 D D2S9-Sn_ 39 5.46 2.52 DMSO −S9 Short
16 D D2S9+Sn_ 43 5.64 2.75 DMSO +S9 Short
17 D D2S9-Ln_ 44 6.95 2.94 DMSO −S9 Long
18 E E1S9-Sn_ 24 4.94 2.00 DMSO −S9 Short
19 E E2S9+Sn_ 46 4.59 2.37 DMSO +S9 Short
20 E E3S9-Ln_ 42 5.32 2.19 DMSO −S9 Long
21 F FS9-Sn_ 46 4.58 2.38 DMSO −S9 Short
22 F FS9+Sn_ 46 4.26 2.27 DMSO +S9 Short
23 F FS9-Ln_ 46 4.98 2.87 DMSO −S9 Long
24 G GS9-Sn_ 34 8.47 3.57 DMSO −S9 Short
25 G GS9+Sn_ 34 7.26 2.76 DMSO +S9 Short
26 G GS9-Ln_ 34 8.29 3.49 DMSO −S9 Long
27 H HS9-Sn_ 17 13.24 8.13 DMSO −S9 Short
28 H HS9+Sn_ 17 13.32 7.54 DMSO +S9 Short
29 H HS9-Ln_ 17 11.65 8.01 DMSO −S9 Long
30 I IS9-Sn_ 14 4.57 3.50 DMSO −S9 Short
31 I IS9+Sn_ 14 2.57 1.16 DMSO +S9 Short
32 I IS9-Ln_ 14 4.21 1.97 DMSO −S9 Long
33 J JS9-Sn_ 72 2.36 1.18 DMSO+ −S9 Short
34 J JS9+Sn_ 78 2.15 1.27 DMSO+ +S9 Short
35 J JS9-Ln_ 64 2.41 1.33 DMSO+ −S9 Long

(DMSO+ signifies a range of different vehicles).
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One laboratory (Lab B) carried out a series of studies: (B1) with
water and another (B2) with DMSO. The means of micronucleated cells
of the B1 series were slightly smaller than the B2 (approximately 5.5/
1000–6.4/1000) but series B1 was small (only 6 studies) and there are
probably many other confounding effects. However, the results are si-
milar enough that the two series could be combined.

Another laboratory (J) carried out studies using a series of different
solvents (Table 3). A one-way anova showed significant differences in
micronucleus incidence between the samples with different solvents.
However, the number of studies was small and Lab J had some of the
lowest scores. Conclusions as to whether the solvent employed is an
important factor in introducing variability into the assay are difficult to

Fig. 1. Means and SD of 35 combinations from 8 laboratories: Black: Short; Grey: Long.

Fig. 2. Means and 95% CI of 35 combinations from 8 laboratories: Black: −S9; Grey: +S9.
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draw from this data set.
Little of the variability in the results could be explained by other

protocol variables. All of the laboratories used CytoB and PHA.
Different stains and different P450 inducers were used and the treat-
ment and recovery times differed slightly between laboratories but
none of these variables appear to influence variability appreciably.

Several laboratories showed significant between experiment (study)
variability indicating that there remained sources of variability that
have yet to be identified. There is substantial between experiment
variability (when compared with the within experiment variability in
one-way anovas) which was detected, where an analysis was possible. A
number of laboratories (i.e. Labs B, C, E, F, G, H, and J) showed

Fig. 3. Plot of the mean micronuclei/1000 cells from the 35 combinations from the 8 participating laboratories (including separate male and female samples).

Fig. 4. Distribution of the mean micronuclei/1000 cells from the 35 combinations from the 8 participating laboratories.

D.P. Lovell et al. Mutat Res Gen Tox En 837 (2019) 52–59

56



appreciable and statistically significant between experiment variability
while Labs D and I showed borderline significance. This between ex-
periment variability can also be seen in the QC charts for these la-
boratories (See Supplementary material).

One factor that did seem to differ between laboratories and could be
an important source of variability was the method of donor selection for
the lymphocytes. The laboratories’ descriptions of the donor criteria
were rather general and imprecise. It was not clear how many donors
were in the pooled samples, and details of their sexes, ages and social
habits were not given. The specific source of the lymphocytes used for a
particular individual study was also unclear.

The exception was the laboratory with two independent sites and

series of studies done using male and female donors. In this case there
seemed to be only a slight difference between the experiments using
male donors in the two series but in the series using female donors the
counts from the US laboratory were appreciably higher (about 3/1000).
There may, of course, be many other factors and confounders in these
studies which could explain this difference.

4. Discussion

The results here will be useful in the assessment of the quality of
negative control data for both an assessment of the competence of a
laboratory to perform the assay and as a help to those who have to
interpret the results of studies based upon the OECD Guidelines.

This study showed appreciable between laboratory variability ran-
ging from 2.2/1000 to 15.9 /1000; approximately a 7.5-fold difference.
This is a wider range than was found in the survey of the TK cell line
where the range was from 3.5/1000 to 13.8/1000 (a fold-difference of
just less than 4) and there were also more participating laboratories in
the TK cell investigation [3]. This increased variability could reflect a
greater inherent variability seen with human donor cells than may be
expected from use of a well-defined cell line.

A number of laboratories had appreciable within laboratory (or
between experiment) variability which was seen both with the results of

Fig. 5. Spread of the mean micronuclei/1000 cells from the 8 participating
laboratories.

Fig. 6. Distribution of individual values of the 8 participating laboratories.

Fig. 7. Box plots of the distribution of the micronuclei counts from the 8 par-
ticipating laboratories.

Fig. 8. Mean and 95% CI for the mean for the micronuclei counts from the 8
participating laboratories.

Table 2
Results for Lab D using manual and image analysis.

Combinatio n Mean SD

Manual Analysis
D1S9-Sm 36 9.58 3.45
D1S9+Sm 94 9.13 3.32
D1S9-Lm 117 8.11 3.26

Image Analysis
D2S9-Sm 39 5.46 2.52
D2S9+Sm 43 5.64 2.75
D2S9-Lm 44 6.95 2.94

Table 3
Results from Lab J using different vehicles /solvents.

Solvent n Mean SD

DMSO 120 2.29 1.13
Ethanol 20 1.55 0.69
Untreated 20 2.00 0.86
Saline 6 3.67 1.03
MF 12 1.83 0.84
Water 30 2.83 1.88

D.P. Lovell et al. Mutat Res Gen Tox En 837 (2019) 52–59

57



an anova and by examining the relevant QC plots. However, the
variability seemed clustered around a specific background level which
was associated with that laboratory rather than covering the full range
across all the laboratories. This was so even though some of the QC
plots for some of the laboratories show variability with some experi-
ments falling outside the control limits based upon QC acceptance
criteria (see Supplementary material).

From the single laboratory from which data were available, an ap-
preciable difference was seen between manual scoring and the use of
image analysis. The majority of samples were scored by manual tech-
niques. There was not enough data to assess whether the use of auto-
mated scoring methods would improve the scoring by reducing po-
tential subjective influences and through the opportunity to increase
the number of cells that could be scored.

There were statistically significant differences between micro-
nucleus frequencies between studies using different solvents but the
sample sizes and the effects were small. In neither case could these be
considered strong evidence for the effect of these factors. There was no
clear evidence that other factors such as presence or absence of S9 or
length of treatment contributed appreciably to the observed variability.
The OECD Guidelines state that CytoB should be used as a cytokinesis
blocker in human lymphocytes studies to account for variability in cell
cycle times and because PHA stimulation will not occur amongst all
lymphocytes. All the laboratories stated that they had used CytoB.

As mentioned earlier one potential source of variability is the do-
nors. Inter-individual variability has been investigated in samples pro-
cessed directly after been taken from individuals in the HUMN project
[8] (rather than, as here, after culturing for use in the in vitro assay).
The HUMN project identified considerable inter-individual variability
in baseline micronucleus frequencies and identified a number of factors
which influenced these frequencies. Kirsch-Volders et al. [5] also
pointed to the increased variability in the assay because of the varia-
bility introduced using donors. The results from the HUMN project
support the possibility that variability between donors could be one of
the important factors contributing to inter-laboratory variability.

The OECD Guidelines suggest that lymphocytes should be obtained
from young(ish) donors (approx. 16–35 years old) with no known ill-
nesses or recent exposures to genotoxic agents and that details re-
garding the number of donors should be given if cells are pooled. In this
study, a direct comparison between male and female donors was only
possible for samples from the UK and US laboratory of one participating
organization. In that organization, there was a pronounced difference in
micronuclei between the scores with female donors from US studies
compared with UK studies. Again, this represents just one study but it
does suggest that the donor may be an important factor and more
specific information on the characteristics of the donor are needed to
identify if inter-donor variability is a major explanatory factor to the
variability between and within laboratories. The investigation of be-
tween donor variability should be a topic for further research.

There were an appreciable number (2.1%) of zero counts which was
probably because the number of cells counted per replicate was 1000
and the background level was low. This provides some support for the
OECD Guidance recommendation to increase the number of cells
counted per replicate to 2000. Although not a major constraint to the
interpretation of the data with low background levels it is difficult to
assess (for instance, using QC plots) whether zero scores are re-
presentative of an unusual (and possibly unacceptable) result in an
experiment. There is some suggestion that the human lymphocyte assay
is expected to have low frequencies [5] which, if generally so, could
have an implication on the number of cells to score per replicate.

There are only a small number of published sets of negative control
data for the micronucleus assay using human lymphocytes. One source,
however, is the SFTG papers [9,10]. As part of this study nine coded
substances were assessed by “…11 laboratories using human lympho-
cytes” [10]. The authors noted that “… the donor variability, inherent
to primary cultures of human lymphocytes, added to the inter-

laboratory variability, may have affected the power of the experimental
system.”

Lorge et al. [9] reported that “(I)n the presence of cytochalasin B,
the lowest backgrounds of micronucleated cells were found in human
lymphocytes in primary cultures (approx. 7–9 per 1000 cells).” Table 4
of their paper reported the following incidences for the three different
treatment regimens: 7.4 ± 7.5 (3+ 26), 7.1 ± 5.3 (3+45) and
6.9 ± 4.9 (20+ 28). (Treatment hours+ recovery hours in brackets).

Reanalysis of the data from the 99 samples in Appendix A of Clare
et al. [10] gave slightly different values and showed that there was
appreciable variability with individual culture values ranging values
from 0.3 to 32.6/1000 cells. There were significant differences in the
negative control values between the laboratories carrying out the assay
(P= 0.001) which ‘explained’ about 24% of the total variability. The
laboratory means ranged from 0.3 to 13.8 mnt/1000 cells. There were
also significant lower counts in the cultures using ‘Medium’ compared
with the other two solvents (ethanol and DMSO). Distinguishing the
factors that affect the scores is complicated by the confounding of
variability between the individual donors, the different solvents and
any other factors that may differ in the conduct of the assays by the 11
participating laboratories. The variability found in this study could be
investigated by specific studies investigating the effect of different do-
nors, solvents and other variables across a number of laboratories.

One surprising aspect of the study was the relatively small number
of laboratories that responded to the GTTC’s multiple calls for data. The
laboratories that volunteered data were considered experienced and it
was not considered that any major laboratory conducting this assay had
been overlooked. However, it is pertinent to ask why there are so few
laboratories and what the pool of expertise/experience means for the
application of this assay. It may be a reflection that whilst the assay has
been developed over several decades, international acceptance as a
regulatory compliant assay, with its own OECD guidance, is relatively
new. Hence, we might expect the adoption of the assay by more la-
boratories in the future; alternatively, it may reflect a more general shift
to the use of the TK6 assay.

An important consideration is whether the range of values obtained
here provides an acceptable range of negative control data. The range is
clearly wide especially given the relative small number of laboratories
who were known experts. Clearly such a range raises questions over
what would be an acceptable biologically important effect. A doubling
effect would clearly be very different if it was from 15 to 30/1000
compared with 2.5 to 5.0/1000. The finding that while a laboratory
may show appreciable intra-laboratory (or between experiment)
variability that this is relative small compared to the range across la-
boratories, suggests that, provided a laboratory can show consistency in
the QC chart, the position of its mean value in the between laboratory
range is less critical. It might, however, be of concern if a new la-
boratory’s mean value fell outside the 2–15 range. Again, further con-
sideration of whether inter-donor variability is an important factor in
the study characteristics might be of importance in reducing variability
in the results.

In conclusion, the results of this study have identified the ranges of
human lymphocyte solvent control micronuclei data collected from a
group of experienced laboratories. These can provide guidance for other
laboratories developing historical control databases. The findings sug-
gest that, although there is variability between laboratories, the intra-
laboratory means remain stable providing evidence to justify the OECD
guidelines on optimal cell numbers for scoring. The analyses carried out
also provide possible approaches for assessing factors influencing
variability.
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