22 research outputs found

    Cyber-Physical System Checkpointing and Recovery

    Get PDF
    Transitioning to more open architectures has been making Cyber-Physical Systems (CPS) vulnerable to malicious attacks that are beyond the conventional cyber attacks. This paper studies attack-resilience enhancement for a system under emerging attacks in the environment of the controller. An effective way to address this problem is to make system state estimation accurate enough for control regardless of the compromised components. This work follows this way and develops a procedure named CPS checkpointing and recovery, which leverages historical data to recover failed system states. Specially, we first propose a new concept of physical-state recovery. The essential operation is defined as rolling the system forward starting from a consistent historical system state. Second, we design a checkpointing protocol that defines how to record system states for the recovery. The protocol introduces a sliding window that accommodates attack-detection delay to improve the correctness of stored states. Third, we present a use case of CPS checkpointing and recovery that deals with compromised sensor measurements. At last, we evaluate our design through conducting simulator-based experiments and illustrating the use of our design with an unmanned vehicle case study

    A novel dilated contextual attention module for breast cancer mitosis cell detection

    Get PDF
    Background and object: Mitotic count (MC) is a critical histological parameter for accurately assessing the degree of invasiveness in breast cancer, holding significant clinical value for cancer treatment and prognosis. However, accurately identifying mitotic cells poses a challenge due to their morphological and size diversity.Objective: We propose a novel end-to-end deep-learning method for identifying mitotic cells in breast cancer pathological images, with the aim of enhancing the performance of recognizing mitotic cells.Methods: We introduced the Dilated Cascading Network (DilCasNet) composed of detection and classification stages. To enhance the model’s ability to capture distant feature dependencies in mitotic cells, we devised a novel Dilated Contextual Attention Module (DiCoA) that utilizes sparse global attention during the detection. For reclassifying mitotic cell areas localized in the detection stage, we integrate the EfficientNet-B7 and VGG16 pre-trained models (InPreMo) in the classification step.Results: Based on the canine mammary carcinoma (CMC) mitosis dataset, DilCasNet demonstrates superior overall performance compared to the benchmark model. The specific metrics of the model’s performance are as follows: F1 score of 82.9%, Precision of 82.6%, and Recall of 83.2%. With the incorporation of the DiCoA attention module, the model exhibited an improvement of over 3.5% in the F1 during the detection stage.Conclusion: The DilCasNet achieved a favorable detection performance of mitotic cells in breast cancer and provides a solution for detecting mitotic cells in pathological images of other cancers

    Rethinking the Dilated Encoder in TE-YOLOF: An Approach Based on Attention Mechanism to Improve Performance for Blood Cell Detection

    No full text
    Blood cell detection is an essential branch of microscopic imaging for disease diagnosis. TE-YOLOF is an effective model for blood cell detection, and was recently found to have an outstanding trade-off between accuracy and model complexity. However, there is a lack of understanding of whether the dilated encoder in TE-YOLOF works well for blood cell detection. To address this issue, we perform a thorough experimental analysis and find the interesting fact that the dilated encoder is not necessary for TE-YOLOF to perform the blood cell detection task. For the purpose of increasing performance on blood cell detection, in this research, we use the attention mechanism to dominate the dilated encoder place in TE-YOLOF and find that the attention mechanism is effective to address this problem. Based upon these findings, we propose a novel approach, named Enhanced Channel Attention Module (ECAM), based on attention mechanism to achieve precision improvement with less growth on model complexity. Furthermore, we examine the proposed ECAM method compared with other tip-top attention mechanisms and find that the proposed attention method is more effective on blood cell detection task. We incorporate the spatial attention mechanism in CBAM with our ECAM to form a new module, which is named Enhanced-CBAM. We propose a new network named Enhanced Channel Attention Network (ENCANet) based upon Enhanced-CBAM to perform blood cell detection on BCCD dataset. This network can increase the accuracy to 90.3 AP while the parameter is only 6.5 M. Our ENCANet is also effective for conducting cross-domain blood cell detection experiments

    Energy Minimizing for Parallel Real-Time Tasks Based on Level-Packing

    No full text
    Abstract-While much work has addressed energy minimizing problem of real-time sequential tasks, little has been done for the parallel real-time task case. In this paper, based on level-packing, we study energy minimization problem for parallel task systems with discrete operation modes and under timing constraints. For tasks with fixed (variable) parallel degrees, we first formulate the problem as a 0-1 Integer Linear Program (0-1 ILP), and then propose a polynomial-time complexity two-step (three-step) heuristic to determine task schedule and frequency assignment (and the task parallel degree). Our simulation result shows that the heuristics consume nearly the same energy as do 0-1 ILPs

    Joint Management of Energy Harvesting, Storage, and Usage for Green Wireless Sensor Networks

    No full text
    Recently, energy harvesting has been emerging as a promising technique to prolong the lifetime for wireless sensor nodes. Most existing efforts address the design of energy harvesting and sensor node subsystem separately or ignore some real-world constraints. In this paper, we study how to codesign the two subsystems and how to jointly manage energy harvesting, storage, and usage. We first propose a novel system architecture for energy harvesting which employs several supercapacitors to eliminate the conflicts on charging and discharging among different system components. Then, we present a method to schedule their charging and discharging, which is proved to be able to guarantee zero waste of the harvested energy if the battery is not full. Third, we propose an optimal algorithm to minimize different components’ capacity and two heuristic algorithms to maximize the system reward. We conduct extensive experiments based on real-life data traces. Results show that the proposed system architecture can harvest more energy compared to the state of the art, and the capacity optimization algorithm can choose the most suitable size for each system component

    Critical Transmission Paths of Aggregate Embodied Carbon Emission Influencing Factors in China

    No full text
    Carbon emissions, being embedded in sectorial production chains, need to be reduced through targeted carbon emission reduction strategies. For such a reason, it is urgent to assess the contributions of different influencing factors among different sectors for different supply chains. Focused on China, being the world’s largest carbon emitter, this paper uses the latest 2018 China’s input-output table to assess different factors, at sectoral scale, related to embodied carbon emissions. The analysis proved that the total final use factor prompted the largest emission growth, while the input-output structure factor inhibited the emission increase significantly. The gross fixed capital formation category was the largest contributor to aggregate embodied carbon emission growth, followed by urban consumption and export categories. The construction was identified as a key sector for its embodied carbon emission, the most relevant intermediate inputs to construction sector are the manufacture of non-metallic mineral products, the smelting and rolling of metals, and the production and supply of electric power and heat power sectors. Results indicate that, in the case of China, low-carbon building materials should be favored in the future. Meanwhile, energy-saving should be promoted among urban residents to increase the effectiveness of carbon emissions reduction strategies

    A multiparameter radiomic model for accurate prognostic prediction of glioma

    No full text
    Abstract An accurate prediction of prognosis is important for clinical treatments of glioma. In this study, a multiparameter radiomic model is proposed for accurate prognostic prediction of glioma. Three kinds of region of interest were extracted from preoperative postcontrast T1‐weighted images and T2 fluid‐attenuated inversion recovery images acquired from 140 glioma patients. Radiomics score (Radscore) was calculated and the conventional image features and clinical molecular characteristics that may be related to progression‐free survival (PFS) were evaluated. Five uniparameter and various combinations of biparameter and multiparameter models based on above characteristics were built. The performance of these models was evaluated by concordance index (C index), and the nomogram of the multiparameter radiomic model was constructed. The results show that the proposed multiparameter radiomic model has a better prediction performance than other models. In the training and validation sets, the calibration curves of the multiparameter radiomic model for the 1‐, 2‐, and 3‐year PFS probability demonstrate a high consistence between predictions and observations. In conclusion, this study demonstrates that the multiparameter radiomic model based on Radscore, conventional image features and clinical molecular characteristics can improve the prediction accuracy of glioma prognosis, which could be informative for individualized treatments

    DataSheet1_A novel dilated contextual attention module for breast cancer mitosis cell detection.pdf

    No full text
    Background and object: Mitotic count (MC) is a critical histological parameter for accurately assessing the degree of invasiveness in breast cancer, holding significant clinical value for cancer treatment and prognosis. However, accurately identifying mitotic cells poses a challenge due to their morphological and size diversity.Objective: We propose a novel end-to-end deep-learning method for identifying mitotic cells in breast cancer pathological images, with the aim of enhancing the performance of recognizing mitotic cells.Methods: We introduced the Dilated Cascading Network (DilCasNet) composed of detection and classification stages. To enhance the model’s ability to capture distant feature dependencies in mitotic cells, we devised a novel Dilated Contextual Attention Module (DiCoA) that utilizes sparse global attention during the detection. For reclassifying mitotic cell areas localized in the detection stage, we integrate the EfficientNet-B7 and VGG16 pre-trained models (InPreMo) in the classification step.Results: Based on the canine mammary carcinoma (CMC) mitosis dataset, DilCasNet demonstrates superior overall performance compared to the benchmark model. The specific metrics of the model’s performance are as follows: F1 score of 82.9%, Precision of 82.6%, and Recall of 83.2%. With the incorporation of the DiCoA attention module, the model exhibited an improvement of over 3.5% in the F1 during the detection stage.Conclusion: The DilCasNet achieved a favorable detection performance of mitotic cells in breast cancer and provides a solution for detecting mitotic cells in pathological images of other cancers.</p
    corecore