
A novel dilated contextual
attention module for breast
cancer mitosis cell detection

Zhiqiang Li1†, Xiangkui Li2†, Weixuan Wu1, He Lyu1, Xuezhi Tang1,
Chenchen Zhou1, Fanxin Xu3, Bin Luo4, Yulian Jiang1*,
Xingwen Liu1 and Wei Xiang1

1Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Southwest
Minzu University, Chengdu, Sichuan, China, 2School of Computer Science and Technology, Harbin
University of Science and Technology, Harbin, China, 3Chongqing Key Laboratory of Computational
Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China, 4Sichuan
Huhui Software Co., LTD., Mianyang, Sichuan, China

Background and object:Mitotic count (MC) is a critical histological parameter for
accurately assessing the degree of invasiveness in breast cancer, holding
significant clinical value for cancer treatment and prognosis. However,
accurately identifying mitotic cells poses a challenge due to their
morphological and size diversity.

Objective:Wepropose a novel end-to-end deep-learningmethod for identifying
mitotic cells in breast cancer pathological images, with the aim of enhancing the
performance of recognizing mitotic cells.

Methods: We introduced the Dilated Cascading Network (DilCasNet) composed
of detection and classification stages. To enhance the model’s ability to capture
distant feature dependencies in mitotic cells, we devised a novel Dilated
Contextual Attention Module (DiCoA) that utilizes sparse global attention
during the detection. For reclassifying mitotic cell areas localized in the
detection stage, we integrate the EfficientNet-B7 and VGG16 pre-trained
models (InPreMo) in the classification step.

Results: Based on the canine mammary carcinoma (CMC) mitosis dataset,
DilCasNet demonstrates superior overall performance compared to the
benchmark model. The specific metrics of the model’s performance are as
follows: F1 score of 82.9%, Precision of 82.6%, and Recall of 83.2%. With the
incorporation of the DiCoA attention module, the model exhibited an
improvement of over 3.5% in the F1 during the detection stage.

Conclusion: The DilCasNet achieved a favorable detection performance of
mitotic cells in breast cancer and provides a solution for detecting mitotic
cells in pathological images of other cancers.
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1 Introduction

Breast cancer is among the most common malignancies, with a
high incidence and mortality rate among women worldwide (Xu
et al., 2023). Histopathological image analysis has long been
regarded as the “gold standard” in cancer diagnosis and
prognosis evaluation (Gurcan et al., 2009). The identification of
molecular quantities and features within patients’ tumors is crucial
for the clinical treatment and prognosis assessment of cancer
patients (Dai et al., 2023). Within histopathological image
analysis, the mitotic count is recognized as a critical histological
parameter for diagnosing and grading cancer (Cree et al., 2021).
However, the current MC still relies on manual counting of mitotic
figures through an optical microscope (Bertram et al., 2020), and
even pathologists only maintain moderate consistency in identifying
mitotic cells (Ibrahim et al., 2021).

To achieve automated mitotic detection to assist pathologists in
diagnosis, traditional machine learning approaches depend on prior
knowledge, employing carefully designed handcraft feature
extractors to process features and integrate various machine
learning classifiers for mitotic cell identification (Lu and Mandal,
2014; Paul and Mukherjee, 2015; Mathew et al., 2021). Although
manual feature extraction contributes to the comprehension of
mitotic cell characteristics, their generalization performance
across large-scale datasets is constrained.

With the continuous advancement of deep learning,
convolutional neural networks (CNNs) have provided new
solutions for mitotic cell detection (Lecun et al., 2015; Lin
et al., 2016; Huang et al., 2017). Concurrently, the availability
of publicly accessible datasets featuring expert-annotated images
of mitotic cells, such as ICPR MITOS-2012 (Ludovic et al.,
2013), AMIDA 2013 (Veta et al., 2015), ICPR MITOS-
ATYPIA-2014 (MITOS-ATYPIA-14., 2014), and TUPAC 2016
(Veta et al., 2019), has facilitated the application of deep learning
methods in mitotic cell detection. However, these datasets only
contain annotated mitotic images corresponding to High Power
Fields (HPF) (Bertram et al., 2020) in hotspots and lack
annotations for most areas of whole slide images (WSI).
Recently, two extensive WSI datasets with annotated mitotic
cells have been introduced: the canine cutaneous mast cell tumor
(CCMCT) dataset (Bertram et al., 2019) and the canine
mammary carcinoma (CMC) dataset (Aubreville et al., 2020).
These datasets enable automatic mitotic detection models to
learn from a more extensive collection of mitotic images and
their contextual information (Bertram et al., 2019).

Previous studies have directly applied deep learning models for
the recognition of mitotic cells (Cireşan et al., 2013; Zerhouni et al.,
2017), but these existing methods lack adequate domain
adaptability. Currently, mitotic recognition methods typically
utilize multi-stage models that integrate various tasks including
detection, segmentation, and classification (Li et al., 2018; Alom
et al., 2020), which perform better than single models. The diverse
and intricate morphological features of mitotic cells across different
cell cycle phases result in significant heterogeneity. Moreover,
mitotic cells are often sparsely distributed and can be easily
mistaken for other cell types, such as apoptotic cells and densely
packed nuclear cells, when compared to normal cells (Ibrahim et al.,
2022). Currently, multi-stage mitotic detection and classification

models have not specifically focused on the impact of feature
extraction and application on model performance.

We propose a two-stage Dilated Cascading Network
(DilCasNet) to improve the performance of mitosis detection. In
the mitosis cell detection stage, inspired by the Extended Contextual
Attention (DiNA) (Hassani and Shi, 2022) and Polar Attention
Network (PolarNet) (Wei et al., 2022), we propose a novel attention
module, namely, Dilated Contextual Attention (DiCoA), and
combine it with the Feature Pyramid Network (FPN) (Lin et al.,
2016) of the Cascade RCNN (Cai and Vasconcelos, 2017) detection
network to enhance the detection performance of mitosis cells. In
the classification stage, we integrate the EfficientNet-B7 (Tan and Le,
2019) and VGG16 (Simonyan and Zisserman, 2015) pre-trained
models to enhance the model’s classification performance. The main
contributions of this study are as follows:

(1) Introducing DiCoA, a sparse global attention module based
on the self-attention mechanism, which achieves a larger
receptive field by sparsifying keys and values, enabling the
model to benefit in the challenging task of mitotic cell
detection with complex morphologies. Experimental
evidence demonstrates that incorporating DiCoA into the
FPN of the Cascade R-CNN detection network reduces false
positive predictions and enhances the model’s performance in
recognizing mitotic cells.

(2) To enhance the feature extraction of mitotic cells by the
classification model, we integrate the EfficientNet-B7 and
VGG16 pre-trained models (InPreMo), further improving
the performance of the mitotic cell detection model by
combining various CNN pre-trained models.

2 Related work

Many automated algorithms for mitosis cell detection have been
proposed to assist pathologists in diagnosis. In the early stages,
manual design and feature selection methods were typically
employed to achieve automated detection (Mathew et al., 2021).
The entire process is generally divided into two steps: First, restrict
the detection scope to specific candidate regions selected for
segmentation. Subsequently, directly extract features from the
image, including texture, statistical, and morphological features
(Irshad et al., 2013; Paul and Mukherjee, 2015; Nateghi et al.,
2017), or extract features from different color spaces (Irshad
et al., 2014b; 2014a; Lu and Mandal, 2014). The extracted
features are then used to develop decision trees, random forests
(RF), support vector machines (SVM) (Udousoro, 2020), and other
classifiers to distinguish non-mitotic cells from mitotic cells in
pathological slides. These methods have demonstrated
competitive performance on datasets such as ICPR MITOS-2012,
AMIDA 2013, and ICPR MITOS-ATYPIA-2014. However, manual
feature extraction primarily relies on handcrafted feature extractors,
making the process labor-intensive and challenging to extract deep
abstract features.

With the development of deep learning, CNNs have
demonstrated excellent capabilities in automatic feature
extraction and learning and have achieved significant
performance in tasks such as image classification, object
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detection, and semantic segmentation (Lecun et al., 2015; Ren
et al., 2015; Weng and Zhu, 2015). Consequently, CNNs have
found widespread applications in medical image processing
(Tran et al., 2021). In the mitosis detection research, some
experts and scholars choose the recently popular deep
convolutional neural networks for automatic mitosis detection.
Employing deep learning algorithms, pixel-wise classifiers have
been developed to compute the probability of each pixel being
associated with a mitotic event (Cireşan et al., 2013; Zerhouni
et al., 2017). These approaches demonstrate a high level of
accuracy. To further augment the model’s capacity for
extracting mitotic cell features, multi-stage deep learning
approaches (Li et al., 2018; Alom et al., 2020) were adopted,
combining detection, segmentation, and classification tasks to
develop two-stage and three-stage models. Similar to existing
studies, our approach also adopts a two-stage method for mitotic
classification detection. The utilization of multiple classifiers
(Wang et al., 2014; Beevi et al., 2017; Mahmood et al., 2020),
combined with handcrafted features, segmentation, or detection
methods, achieved mitosis detection in a cascaded manner,
further strengthening the model’s capability in feature
extraction and mitotic cell recognition. These methods have
all demonstrated various degrees of performance improvement
on the ICPR MITOS-2012 and MITOS-ATYPIA-2014 datasets.
However, these two datasets have limited images and samples,
and most of the WSI regions lack images and annotations, which
poses challenges for model training. In accordance with
recommendations from existing studies (Aubreville et al.,
2020), we utilized a larger-scale CMC dataset for model
training and evaluation.

Due to the diverse shapes of mitotic cells, attention modules
are widely considered effective for better feature extraction from
data (Brauwers and Frasincar, 2022). Hu et al. (2020) introduced
Squeeze-and-Excitation Networks (SENet), which construct
interdependencies among feature channels through weighted
operations to enhance model expressiveness. Regarding spatial
information processing, Huang et al. (2018) proposed the Criss-
Cross Network (CCNet) to help the network obtain contextual
information from the image, allowing each pixel to perceive its
relevance to the entire image. To simultaneously focus on
channel and spatial information, Woo et al. (2018) introduced
the Convolutional Block Attention Module (CBAM), which
combines channel and spatial attention, maintaining a small
overhead while improving the model’s focus on spatial and
channel features. Multiple studies have demonstrated that
introducing attention modules effectively enhances the
model’s feature extraction capability. However, these classical
attention mechanisms are not specifically designed for mitotic
detection and cannot fully leverage the potential of attention
mechanisms to enhance model performance in mitotic
classification detection. Therefore, we have devised a novel
attention mechanism to address this purpose. Simultaneously,
transfer learning methods (Pan and Yang, 2010) have been widely
applied in various tasks to alleviate the issues of training network
models requiring time and limited training data, which are of
great significance for automated mitotic cell detection research.
These methods have positive implications for enhancing the
performance of automated detection of mitotic cells.

3 Materials and methods

3.1 Materials

3.1.1 CMC dataset
This study utilized a dataset of 21 WSIs for CMC (Aubreville

et al., 2020), which encompassed three different modes of
annotations: Manually Expert Labeled (MEL), Object-Detection
Augmented and Expert Labeled (ODAEL), and Clustering and
Object-Detection Augmented and Expert Labeled (CODAEL). To
facilitate comparison with prior research (Piansaddhayanaon et al.,
2023), we followed themethodology presented in the previous study,
using the CODAEL annotations for training and testing, with 14 of
the WSIs in the training set and the remaining 7 in the test set.
Detailed information on this dataset is provided in
Supplementary Data SA.1.1.

3.1.2 CCMCT dataset
This study conducts generalization validation using the CCMCT

dataset, which comprises 32 WSIs. The dataset includes three
different annotation methods for various categories: Manually
Expert Labeled (MEL), Hard-Example Augmented Expert
Labelled (HEAEL), and Object-Detection Augmented Expert
Labelled (ODAEL). To facilitate comparison with prior research
(Bertram et al., 2019), we performed testing on a test set containing
11 WSIs. For detailed information on this dataset, please refer to
Supplementary Data SA.1.2.

3.2 Methods

Figure 1 illustrates the overall workflow of the mitosis detection
model DilCasNet. Large WSIs, after undergoing preprocessing steps
such as cropping, are input into themodel to detect mitotic cells. The
model is primarily divided into two stages: the mitotic detection
stage utilizing Cascade R-CNN with DiCoA attention and the
mitotic cell classification stage incorporating pre-trained models,
EfficientNet-B7 and VGG16.

3.2.1 DiCoA module
The design of DiCoA is illustrated in Figure 2. In the first step,

DiCoA obtains the attention score matrix of the dilation contextual
by calculating the self-attention within the neighborhood of the
feature expansion interval, as shown in Figure 2 (I). Subsequently,
DiCoA further generates new feature maps by weighting the
attention scores in different directions within the interval
neighborhood region, as depicted in Figure 2 (II).

Calculating the attention scores for the dilated contextual of
feature maps: Given the input feature map x ∈ RC×H×W, projections
of the feature map queries (Q ∈ RC×H×W), keys (K ∈ RC×H×W), and
values (V ∈ RC×H×W) are obtained through 2D convolution. The
formula for the matrix of attention scores for the dilated contextual,
DPS ∈ RC×H×W, as shown in Formula 1.

DPSδD,i,j � softmax Qc,i,j ⊙ KT
c,ρδD i,j( )( ) (1)

Where i and j denote the coordinates of the i-th row and j-th
column in the feature map. Qc,i,j represents the nearest neighbor
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query for the pixel at coordinates (i, j). ⊙ denotes the dot product
operation. D represents the total number of pixels in a
neighborhood of size k; we set the k to 3 and the D to 9.
δ ∈ [1, k] represents the dilation value; we set the δ to 1.
ρδD(i, j) ∈ ND×2 denotes the positions of neighbors in the
δ-dilated neighborhood of the (i, j)-th pixel (see
Supplementary Data SA.2.1). K c,ρδD(i,j) represents the key for
the (i, j)-th pixel in the δ-dilated neighborhood of size k. In
addition, Supplementary Data SA.2.2 provides the update
method for attention scores in the network.

Updating the feature maps of the network: The dot product
operation between Q and K results an dilated contextual
attention score matrix, DPS, of size (H × W) × 1 × D. After
resizing, it becomes a D × H × W matrix. Finally, matrix
operation between DPS and V results in the weighted feature
map y ∈ RC×H×W with dimensions C × H × W, as depicted in
Formula 2.

yc,i,j � norm ∑D

n�1DPS
δ
n,i,j × V D,δ( )

c,i,j + x( ) (2)

Where c represents the channel size of the feature map. norm
denotes the data normalization method. V(D,δ)

c,i,j represents the value
projection of the δ-dilated neighborhood of size k for the (i, j)-th
pixel, which can be expressed by Formula 3.

V D,δ( )
c,i,j � VT

c,ρδ1 i,j( ) VT
c,ρδ2 i,j( ) / VT

c,ρδD i,j( )[ ]
T

(3)

3.2.2 Network architecture
Figure 3 shows the structure of our DilCasNet, which comprises

two stages: detection and classification. In the detection stage, we
employ the Cascade R-CNN object detection network and introduce
the DiCoA attention module to predict the positions of mitotic
figures in WSI. Subsequently, a window relocation algorithm is
applied to reassess low-quality false-positive predictions around the
image borders, as illustrated in Figure 3 (I). In the classification
stage, we refine the detected targets by center adjustment to better
align with the image center. We then incorporate EfficientNet-B7
and VGG16 pre-trained models to reevaluate the confidence scores
for each image’s targets, resulting in the final predictions, as depicted
in Figure 3 (II).

3.2.3 Detection stage
In the detection stage, we employed the Cascade R-CNN object

detection network with an input image size of 3 × 512 × 512. The
network outputs a set of bounding boxes {x, y, w, h, Pdet}, where
(x, y) represents the center coordinates of the predicted target, w
and h denote the width and height of the bounding box, and Pdet

indicates the confidence of a positive target.
Figure 3 (I) illustrates that our model utilizes ResNet-101 (He

et al., 2016) as the backbone network to extract features. These
features are fed into a Feature Pyramid Network (FPN) layer
enhanced with DiCoA to integrate multi-scale feature
information. The DiCoA module is incorporated during the
bottom-up process of the FPN module, positioned after the 1 × 1

FIGURE 1
Overall Study Design. At the top, the flowchart of our method is presented; the middle section provides detailed implementation steps; after
preprocessing of the massive WSIs, different-sized images for the detection and classification stages of model training are generated; on the right, our
method’s performance is demonstrated in various aspects; at the bottom, a brief overview of how our method processes WSI is outlined.
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FIGURE 2
The structural diagram of DiCoA, where C, H, and W represent the number of channels, height, and width of the input feature map, respectively.

FIGURE 3
Mitosis detection model overall architecture diagram. I. Detection stage; II. Classification stage. Where Cm , Hm , Wm and represent the channels,
height, and width of the feature map, respectively.
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convolution layer of the C5 layer. This adjustment allows the feature
extraction regions to adapt to the actual size of mitotic cells, as
detailed in Supplementary Data SA.3.

After undergoing DiCoA processing, the feature map will yield
weighted feature map y and dilated contextual attention scoresDPS.
The feature map y is input into the Top-down process of the FPN
module at the P5 layer to facilitate the transmission of high-level
semantic information to lower-level feature maps. Simultaneously,
DPS is transformed into a scalar result Pdicoa.

The multi-scale feature maps fused by the FPN are input into the
Region Proposal Network (RPN) (Ren et al., 2015) for generating
candidate regions of mitotic cells. Subsequently, these target candidate
regions are passed through the Cascade ROI Head, which consists of a
series of cascaded classification heads and regression heads. This process
yields the regression parameters x,y,w, h for the bounding box of the
target, along with the original target confidence score Pobj. Finally, the
original target confidence Pobj and the attention score Pdicoa from
DiCoA are weighted by the factor α, resulting in the ultimate confidence
Pdet or the mitotic cell bounding box. The update is formulated as
follows in Eq. 4:

Pdet � 1 − α( )Pobj + αPdicoa (4)

In this context, where α ∈ [0, 1] represents the confidence
allocation weight for DiCoA, we set the weight (α) to 0.5 (refer
to Supplementary Data SB.5).

To maintain model performance stability during data sampling,
we opt not to employ dynamic queries. Instead, we sample from the
WSI and then train and test. Simultaneously, within the DiCoA
module, we set the channel number of the 2D convolution to 256,
the kernel size to 1, and the stride to 1. The neighborhood size (k) is
set to 3 (refer to Supplementary Data SB.2), resulting in D being 9.
The dilation value (δ) is set to 1. The configuration for ρδD(i, j) is
provided in Supplementary Data SA.2.1.

Following the detection stage, we applied a window relocation
method (Piansaddhayanaon et al., 2023) to eliminate low-quality
predictions around the borders of the sliding window frames.

The detailed structural parameters of the detection stage can be
found in Supplementary Data SA.6.1.

3.2.4 Classification stage
The classification stage occurs after the target detection stage, as

illustrated in Figure 3 (II). Initially, we employ the target center
adjustment method (Piansaddhayanaon et al., 2023), which adjusts
the extracted target center coordinates (x, y) to the image center
(xo, yo), with specific update details outlined in Supplementary Data
SA.4. Subsequently, the EfficientNet-B7 and VGG16 pre-trained
models receive input images of size 3 × 128 × 128 and generate
feature map outputs with consistent width and height, denoted as
H × W × C1 and H × W × C2, respectively. Here, C1 and C2

represent the channel numbers of the feature maps from
different pre-trained models. These two feature maps are
concatenated along the channel dimension to form a feature map
of size H × W × (C1 + C2). Following this, a 2D global average
pooling operation is applied to compress the concatenated feature
map to dimensions 1 × (C1 + C2), and then passed through a fully
connected layer to output the target confidence. The final output
result is utilized to update the results from the detection stage,
following the updating method of DeepMitosis (Li et al., 2018). This

involves weighting the confidence values Pdet from the detection
stage and Pcls from the classification stage with a weight parameter ω
to obtain the ultimate target confidence P, as expressed in formula 5.

P � ωPdet + 1 − ω( )Pcls (5)

Where ω ∈ [0, 1] is the confidence allocation weight, and
Supplementary Data SB.6 explores the setting of this parameter.

The detailed structural parameters of the classification stage can
be found in Supplementary Data SA.6.2.

3.3 Experimental setup

All experiments in this study were conducted on a computer
running the Ubuntu operating system, utilizing the MMDetection
(Chen et al., 2019) detection framework, complemented by the
Pytorch1.9 and the TensorFlow deep learning library. Our
computational setup included an Intel(R) Xeon(R) Silver
4110 CPU @ 2.10 GHz processor and three GeForce RTX
2080 Ti graphics cards.

3.3.1 Detection stage
In the MMDetection object detection framework, we utilized

ImageNet (Deng et al., 2010) pre-trained weights to initialize the
network’s backbone. We employed the data sampling strategy from
Piansaddhayanaon et al. (2023), randomly selecting 5,000 images of
size 512 × 512 from each training WSI for training. During training,
we set the batch size to 4 and employed random flips, standard
photometric augmentations, and other methods to mitigate the risk
of overfitting. Stochastic gradient descent (SGD) was the optimizer.
The learning rate followed a stepwise constant decay strategy,
starting at 10−3. After the fifth and seventh epochs, the learning
rate was divided by 10, reaching a final decay to 10−5. The maximum
number of training epochs was set to 8.

3.3.2 Classification stage
In the classification stage, initially, we adjust the detected

positions of mitotic cells (Piansaddhayanaon et al., 2023), and
detailed experimental settings can be found in Supplementary
Data SA.5. Subsequently, we employ EfficientNet-B7 and
VGG16 models pre-trained on ImageNet as the backbone of
the network. The input image resolution is set to 128 × 128,
obtained through active learning data sampling methods
(Piansaddhayanaon et al., 2023). We set the batch size to
32 and applied data augmentation techniques, including
random translation, random flipping, and standard
photometric augmentation. The model is trained using the
Adam optimize, with a total of 24,000 training iterations. The
initial learning rate is set to 5 × 10−4. Dynamic updates were
implemented by dividing the learning rate by 10 at the 15,000th
and 21,000th iterations, ultimately decaying to 10−6.

3.4 Model performance evaluation
indicators

This paper employs commonly used evaluation metrics,
including recall(sensitivity), precision, F1-Score, accuracy, and
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specificity, as presented in Formulas 6–10. The F1-Score is obtained
by calculating the harmonic mean of precision and recall.

Recall Sensitivity( ) � TP

TP + FN
(6)

Precision � TP

TP + FP
(7)

F1 � 2 × Recall × Precision

Recall + Precision
(8)

Accuracy � TP + TN

TP + TN + FP + FN
(9)

Specificity � TN

TN + FP
(10)

Where TP represents the number of correctly predicted positive
samples, FP denotes incorrectly predicted positive samples, FN
represents incorrectly predicted negative samples, and TN
denotes the number of correctly predicted negative samples.

4 Results

4.1 Ablation experiments

4.1.1 Model exploration
As shown in Table 1, the performance of the model, combining

the detection and classification stages, is superior to that of using
only the detection model. In both the integrated model with both
detection and classification stages and the case of using only the

detection model, the performance of the model is improved with the
addition of the DiCoA module.

4.1.2 Detection stage: comparative analysis of
different attention modules

As shown in Table 2, on the Cascade R-CNN detection network,
our proposed DiCoA attention module, compared to the result
without any modifications, exhibited improvements in Recall and
F1 by more than 7.5% and 4%, respectively, while experiencing a
slight decrease in Precision by 0.1%. In contrast, incorporating the
CBAM attention module on the Cascade R-CNN detection network
resulted in a 0.5% increase in Recall but led to reductions of 5% and
2% in Precision and F1, respectively. Additionally, for this task,
CCNet and SENet attention modules did not yield performance
enhancements on the Cascade R-CNN network.

4.1.3 Classification stage: combining pre-trained
models for comparison

After the detection stage, we further investigated the impact
of combining different pre-trained models on the performance of
the classification stage. According to the results in
Supplementary Table SB.11, the combination of two pre-
trained models, EfficientNet-B7 and VGG16, achieved optimal
performance. Compared to using only the VGG16 model,
integrating multiple pre-trained models (InPreMo) resulted in
improvements of 2.8%, 0.4%, and 1.6% in Precision, Recall, and
F1, respectively. Compared to the EfficientNet-B7 model alone,
InPreMo exhibited increases of 1.4% in Recall and 0.3% in F1.

TABLE 1 The ablation experiment comparison between add DiCoA and EfficientNet-B7 + VGG16 on the CMC dataset.

Detector DiCoA EfficientNet-B7 + VGG16 Test CMC (%)

F1 Precision Recall

Cascade R-CNN

68.0 69.8 66.3

✓ 74.2 72.8 75.8

✓a 82.2 81.4 83.0

✓ ✓a 82.9 82.6 83.2

aIntegration of the detection and classification stages.

TABLE 2 Comparative analysis of various attention modules on cascade R-CNN detection network.

Detector Method Test CMC (%)

F1 Precision Recall

Cascade R-CNN

—(Piansaddhayanaon et al., 2023)a 70.2 72.9 67.9

+ SENet (Hu et al., 2020)b 67.6 69.4 66.0

+ CCNet (Huang et al., 2018)b 67.7 67.9 67.6

+ CBAM (Woo et al., 2018)b 68.2 67.9 68.4

+ DiCoAc 74.2 72.8 75.8

aNo improvement methods were implemented.
bThe attention mechanism proposed in the article.
cThe attention module approach proposed by us.
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Furthermore, when compared to the combination of three pre-
trained models (EfficientNet-B7, Resnet50, and VGG16), the
combination of two pre-trained models (EfficientNet-B7 and
VGG16) suggested higher Recall and F1 by 2.3% and 0.3%,
respectively, while experiencing a decrease of 1.8% in
Precision. Additionally, Supplementary Data SB.9 provides a
detailed information on the sensitivity, specificity, and
confusion matrix assessments for various classification models.

4.2 Comparison with existing literature

As shown in Table 3, our improved method achieved superior
results on the CMC dataset compared to existing literature. In
contrast to the holistic approach employing the RetinaNet
network, our method demonstrates an overall performance
improvement of over 5% in Precision, Recall, and F1. Compared
to the pipeline of Cascade R-CNN network, our method
demonstrates improvements of 0.6%, 1.3%, and 1% in Precision,
Recall, and F1, respectively. Additionally, in comparison to the full
pipeline of the Faster-RCNN network, our process exhibits an
enhancement of 2.4% in Precision, a 0.6% improvement in F1,
and a 1.3% decrease in Recall.

After incorporating the improved DiCoA attention module,
compared to the Cascade R-CNN detection network, the
detection stage exhibited significant improvements of 7.9% and
4% in Recall and F1, respectively. Relative to the Faster R-CNN
and the RetinaNet methods, notable enhancements of 3.8% and
1.6% in F1 were observed. Significance testing using a T-test,
presented in Supplementary Data SB.4, indicated p
values <0.001 for the F1, demonstrating the statistical significance
of using the Cascade R-CNN with the added DiCoA attention
module over other methods.

Furthermore, we conducted additional evaluation of the model
using the CCMCT dataset. Our approach achieved the best
performance in Precision compared to the baseline model.
Although the F1 score and Recall were slightly lower by 0.2%
and 0.5%, respectively, compared to the performance obtained

with the Faster-RCNN model, our method still maintained an
advantage over other benchmark models.

The above results indicate that our method enhances the
detection performance of mitotic cells.

4.3 End-to-end evaluation experiment

In an end-to-end setting, following the definition (Meuten et al.,
2015) of mitotic cell counting, we determined the region with the
highest predicted mitotic cell count (High-Power Field, HPF)
(Bertram et al., 2020) by counting mitotic shapes in 10 high-
power fields (HPFs) of 2.37mm2 each, represented by rectangular
windows of size 7110 × 5333 pixels. Once the HPF region for the
WSI was identified, mitotic cell counting was performed either in a
fully automated (GA) manner or through a human-machine
interactive approach (GB). Under the fully automated setting, the
predicted mitotic cell count in the selected HPF was used as the final
mitotic cell count. In the human-machine interactive setting, mitotic
cell counting was determined based on the annotated mitotic shapes
in the selected HPF. Table 4 reports the Mean Absolute Percentage
Error (MAPE) and Mean Absolute Error (MAE) at the prediction
threshold with the lowest MAPE, indicating a significant
improvement in mitotic cell counting on the CMC dataset in a
human-machine collaborative environment.

5 Discussion

To construct a more accurate model for mitotic cell detection,
we devised a two-stage (detection and classification) task model. In
the detection stage, we innovatively designed the DiCoA attention
module. In the classification stage, we ingeniously proposed a
method that integrates multiple pre-trained models to identify
mitotic cells. We achieved improved performance on the
CMC dataset.

Attention mechanisms are employed to capture crucial features
in data, leading to a significant enhancement in model performance

TABLE 3 Comparison of the proposed method with existing approaches.

Detector Method Test CMC (%) Test CCMCT (%)

F1 Precision Recall F1 Precision Recall

RetinaNet (Aubreville et al., 2020)a
Detection stage 72.6 69.7 75.8 62.8 57.7 68.8

Full Pipeline 77.5 77.0 77.9 82.0 82.8 81.2

Faster-RCNN (Piansaddhayanaon et al., 2023)a
Detection stage 70.4 71.1 69.7 78.2 78.5 77.9

Full Pipeline 82.3 80.2 84.5 83.2 83.0 83.4

Cascade R-CNN (Piansaddhayanaon et al., 2023)a
Detection stage 70.2 72.9 67.9 75.8 76.5 75.1

Full Pipeline 81.9 82.0 81.9 82.9 83.2 82.6

Cascade R-CNN
Detection stageb 74.2 72.8 75.8 77.4 77.6 77.2

Full Pipelinec 82.9 82.6 83.2 83.0 83.2 82.9

aResults obtained from the article.
bIncorporating our attention module.
cThe final results obtained by our approach.
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(Brauwers and Frasincar, 2022). Despite the diverse types of
attention mechanisms proposed, there is limited literature on
how to choose an appropriate attention mechanism for mitotic
cell identification in cancer. Therefore, we investigated the
application of some commonly used attention mechanisms
[SENet, which assists the network in automatically capturing the
importance of each feature channel (Hu et al., 2020); CCNet, which
helps the network capture long-range dependencies between feature
pixels (Huang et al., 2018); CBAM, which enhances attention in both
spatial and channel dimensions (Woo et al., 2018)] in the task of
mitotic cell recognition. As shown in Table 2, while these methods
bring varying degrees of performance improvement in their
respective domains, their ability to enhance the extraction of
advanced features related to mitotic cells is limited. To better
extract features of mitotic cells, we proposed a novel DiCoA
module to capture remote dependencies between features of
mitotic cells. As shown in Table 1, the use of the DiCoA
attention module benefits the model in both the single detection
stage and the combined detection and classification stages. The
introduction of DiCoA reduces false negatives and false positives in
mitotic predictions (Supplementary Data SB.7). Simultaneously, as
demonstrated in Table 2, the overall performance (Precision, Recall,
and F1) with the inclusion of the DiCoA attention module
consistently exceeds 72%, while combining CBAM, SENet, and
CCNet attention modules yields an overall performance
of only 69%.

In previous studies, researches (Irshad et al., 2013; 2014b; Lu and
Mandal, 2014; Paul and Mukherjee, 2015; Nateghi et al., 2017)
extracted features of mitotic cells manually and subsequently
employed machine learning methods for mitotic cell
identification. While these methods exhibited remarkable
interpretability, they necessitated extensive data preprocessing
and feature engineering. In contrast, our approach employs an
end-to-end algorithm, leveraging the DiCoA attention
mechanism and pre-trained models for enhanced feature
extraction and application, thereby improving model
performance. With the rise of deep learning, it has been applied
in mitotic cell recognition (Cireşan et al., 2013; Zerhouni et al., 2017;
Li et al., 2018; Alom et al., 2020). Two fully annotated WSI datasets
CCMCT and CMC were introduced, and mitotic cell detection was
performed using RetinaNet, followed by classification using
ResNet18, achieving a baseline performance. To address the
challenge of inconsistent data distribution between detection and
classification networks, an improved two-stage framework,
ReCasNet (Piansaddhayanaon et al., 2023) was proposed for
mitotic detection in CCMCT and CMC datasets. Despite
promising results on CCMCT and CMC datasets in existing
studies, considering the complexity of mitotic classification

detection and model training, the full potential of model
performance has yet to be fully explored. As shown in
Supplementary Data SB.10, we have summarized and organized
various approaches in this field (Cireşan et al., 2013; Albarqouni
et al., 2016; Zerhouni et al., 2017; Aubreville et al., 2020; Sebai et al.,
2020; Piansaddhayanaon et al., 2023). With an increase in the
number of data samples, the performance of single-stage models
is limited, and the adoption of two-stage models can further enhance
model performance. However, not all two-stage models yield
satisfactory results, indicating the need for further exploration.
To enhance the model’s performance in mitotic cell recognition
and fully exploit the potential of deep learning methods, we
developed the DiCoA module, combined with FPN, to identify
mitotic cells with diverse scales and shapes. Additionally, we
introduced the InPreMo method for fine-grained mitotic
classification. As shown in Table 3, compared to the best results
of existing research on the CMC dataset (Piansaddhayanaon et al.,
2023), our approach achieved an improvement of over 0.5% in
Precision and F1. In the detection stage, we introduced the DiCoA
module on the Cascade R-CNN network. Compared to the use of
Cascade R-CNN and Faster-RCNN networks (Piansaddhayanaon
et al., 2023), our approach demonstrated an improvement of over
6% in Recall and over 3.5% in F1. Finally, we evaluated our method
in an end-to-end setting. In a human-machine collaborative
scenario, our approach, denoted as MC, exhibited a 43.8%
reduction in Mean Absolute Error (MAE) (see Table 4).

To enhance the performance in the classification stage, manually
extracted features were fused with those obtained from CNN into three
classifiers (Wang et al., 2014), achieving improved performance while
minimizing computational resource demands. However, manual
feature extraction requires domain-specific expertise and often
struggles to adapt to large-scale datasets. A deep belief network with
multiple classifiers (Beevi et al., 2017) was proposed to segment nuclear
regions from clinical images. This approach utilizes multiple classifiers
and determines the final outcome through majority voting, resulting in
enhanced performance. However, precise nuclear segmentation is
required for training effective classifiers, and the training of multiple
classification models is complex. To address this, we propose a
straightforward multi-pre-trained fusion method, combining two
distinct pre-trained models, EfficientNet-B7 and VGG16. Compared
to using the VGG16 model alone, our approach suggested
improvements of over 1% in Precision and F1. Additionally, relative
to the EfficientNet-B7 model, we achieved increases of over 0.2% in
Recall and F1. These results indicate that the InPreMo method can
effortlessly integrate different pre-trained models, leading to effective
performance enhancement.

In the detection stage, we compared the results ofmultiple detection
models (Supplementary Data SB.1) and ultimately selected Cascade

TABLE 4 The end-to-end performance of the proposed method, as evaluated on the CMC dataset.

Dataset Method GA GB

MAPE MAE MAPE MAE

CMC
ReCasNet (Piansaddhayanaon et al., 2023)a 5.6 1.9 5.6 1.6

Ours 5.8 2.0 4.3 0.9

aResults obtained from the article.
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R-CNN, which demonstrated the best performance, as our detection
model.When utilizing the InPreMo approach, the relationship between
the number of stacked models and performance is not linear. As shown
in Supplementary Data SB.8, compared to the ensemble of models
utilizing EfficientNet-B7, Resnet50, and VGG16 pre-trained methods,
combining EfficientNet-B7 and VGG16 pre-trained models yielded a
more significant performance improvement while reducing model
complexity. We also attempted the advanced CNN classification
model ConvNeXt (Liu et al., 2022), but its performance in this task
was limited and, therefore, not included. Additionally, constrained by
computational resources, we conducted model performance evaluation
only on the relatively smaller CMC dataset. Furthermore, despite our
method achieving a modest improvement of only 0.5% over the best
results from existing research, considering the ubiquity of our approach
and the intricate diversity of mitotic cells, our results are deemed
acceptable.

It is noteworthy that, when updating the feature map and
bounding box confidence of mitotic cells using DiCoA, we found
the optimal threshold for mitotic cell bounding boxes to be 0.48
(refer to Supplementary Data SB.3). The reason for this is that, as
shown in Eq. 4, we add attention scores from the feature map to the
bounding box confidence of the original network, giving it a weight
of 0.5. This changes the network’s confidence.

Updating the confidence of mitotic cell bounding boxes with
DiCoA may lead to a decrease in box confidence. If adaptation to
other domains is required, itmay beworth considering not updating the
confidence of the targets. Additionally, the InPreMo method
necessitates the selection of an appropriate model depending on the
specific task, which warrants further exploration in other studies.
Moreover, in terms of model complexity, the introduction of both
DiCoA and InPreMo tends to increase the model’s complexity to some
extent. Although our enhancements have improved the model’s
capability to extract features related to mitotic cells, further research
and optimization are still required to enhance the performance of the
network inmitotic cell recognition. Furthermore, in upcoming research,
we will further consider addressing variability both between and within
observers to ensure the accuracy and reliability of the data.

6 Conclusion

We developed the DilCasNet model for more accurate
identification of mitotic cells by introducing two key improvements
to the two-stage mitotic cell detection method. Firstly, we proposed the
DiCoA module with sparse global attention, effectively enhancing the
detection network’s ability to capture long-range dependencies between
features of mitotic cells. This enables the model to better recognize
mitotic cells of varying sizes and shapes, reducing false-negative and
false-positive predictions while significantly improving overall
performance. Secondly, we ingeniously integrated the EfficientNet-
B7 and VGG16 pre-trained models, enhancing the model’s
performance in the classification stage. This approach provides a
novel choice for current classification networks. Our method
demonstrated improved performance in detecting mitotic cells on
the CMC dataset.
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