51 research outputs found

    Thermocapillary actuation of liquid flow on chemically patterned surfaces

    Get PDF
    We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient |dT/dx| and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on w, |dT/dx| and V. In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies

    Multi-Temperature Blackbody Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations

    Full text link
    We use a ray-tracing technique to compute the observed spectrum of a thin accretion disk around a Kerr black hole. We include all relativistic effects such as frame-dragging, Doppler boost, gravitational redshift, and bending of light by the gravity of the black hole. We also include self-irradiation of the disk as a result of light deflection. Assuming that the disk emission is locally blackbody, we show how the observed spectrum depends on the spin of the black hole, the inclination of the disk, and the torque at the inner edge of the disk. We find that the effect of a nonzero torque on the spectrum can, to a good approximation, be absorbed into a zero-torque model by adjusting the mass accretion rate and the normalization. We describe a computer model, called KERRBB, which we have developed for fitting the spectra of black hole X-ray binaries. Using KERRBB within the X-ray data reduction package XSPEC, and assuming a spectral hardening factor f_col = 1.7, we analyze the spectra of three black hole X-ray binaries: 4U1543-47, XTE J1550-564, and GRO J1655-40. We estimate the spin parameters of the black holes in 4U1543-47 and GRO J1655-40 to be a/M ~ 0.6 and ~ 0.6-0.7, respectively. If f_col ~ 1.5-1.6, as in a recent study, then we find a/M ~ 0.7-0.8 and ~ 0.8-0.9, respectively. These estimates are subject to additional uncertainties in the assumed black hole masses, distances and disk inclinations.Comment: 75 pages, including 14 figures; accepted for publication in ApJS on December 14, 200

    GYOTO: a new general relativistic ray-tracing code

    Full text link
    GYOTO, a general relativistic ray-tracing code, is presented. It aims at computing images of astronomical bodies in the vicinity of compact objects, as well as trajectories of massive bodies in relativistic environments. This code is capable of integrating the null and timelike geodesic equations not only in the Kerr metric, but also in any metric computed numerically within the 3+1 formalism of general relativity. Simulated images and spectra have been computed for a variety of astronomical targets, such as a moving star or a toroidal accretion structure. The underlying code is open source and freely available. It is user-friendly, quickly handled and very modular so that extensions are easy to integrate. Custom analytical metrics and astronomical targets can be implemented in C++ plug-in extensions independent from the main code.Comment: 20 pages, 11 figure

    Black hole spin: theory and observation

    Full text link
    In the standard paradigm, astrophysical black holes can be described solely by their mass and angular momentum - commonly referred to as `spin' - resulting from the process of their birth and subsequent growth via accretion. Whilst the mass has a standard Newtonian interpretation, the spin does not, with the effect of non-zero spin leaving an indelible imprint on the space-time closest to the black hole. As a consequence of relativistic frame-dragging, particle orbits are affected both in terms of stability and precession, which impacts on the emission characteristics of accreting black holes both stellar mass in black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN). Over the last 30 years, techniques have been developed that take into account these changes to estimate the spin which can then be used to understand the birth and growth of black holes and potentially the powering of powerful jets. In this chapter we provide a broad overview of both the theoretical effects of spin, the means by which it can be estimated and the results of ongoing campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes - From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer: Astrophysics and Space Science Library. Additional corrections mad

    Thickness and Shape of Films Driven by a Marangoni Flow

    No full text

    Maximum energy tracking approach to reconstructing human cardiac fibers from DTI

    No full text
    International audienc
    • 

    corecore