62 research outputs found

    Repeated administration of phytocannabinoid Δ9-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner

    Get PDF
    These studies probed the relationship between intrinsic efficacy and tolerance / cross-tolerance between Δ9-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than Δ9-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0 mg/kg or 10.0 mg/kg, respectively) or a maximally hypothermic dose of 30.0 mg/kg Δ9-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0 mg/kg Δ9-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a Δ9-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated Δ9-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs

    In Vitro and In Vivo Characterization of the Alkaloid Nuciferine

    Get PDF
    RationaleThe sacred lotus (Nelumbo nucifera) contains many phytochemicals and has a history of human use. To determine which compounds may be responsible for reported psychotropic effects, we used in silico predictions of the identified phytochemicals. Nuciferine, an alkaloid component of Nelumbo nucifera and Nymphaea caerulea, had a predicted molecular profile similar to antipsychotic compounds. Our study characterizes nuciferine using in vitro and in vivo pharmacological assays.MethodsNuciferine was first characterized in silico using the similarity ensemble approach, and was followed by further characterization and validation using the Psychoactive Drug Screening Program of the National Institute of Mental Health. Nuciferine was then tested in vivo in the head-twitch response, pre-pulse inhibition, hyperlocomotor activity, and drug discrimination paradigms.ResultsNuciferine shares a receptor profile similar to aripiprazole-like antipsychotic drugs. Nuciferine was an antagonist at 5-HT2A, 5-HT2C, and 5-HT2B, an inverse agonist at 5-HT7, a partial agonist at D2, D5 and 5-HT6, an agonist at 5-HT1A and D4 receptors, and inhibited the dopamine transporter. In rodent models relevant to antipsychotic drug action, nuciferine blocked head-twitch responses and discriminative stimulus effects of a 5-HT2A agonist, substituted for clozapine discriminative stimulus, enhanced amphetamine induced locomotor activity, inhibited phencyclidine (PCP)-induced locomotor activity, and rescued PCP-induced disruption of prepulse inhibition without induction of catalepsy.ConclusionsThe molecular profile of nuciferine was similar but not identical to that shared with several approved antipsychotic drugs suggesting that nuciferine has atypical antipsychotic-like actions

    Discriminative Stimulus Effects of Psychostimulants and Hallucinogens in S(+)-3,4-Methylenedioxymethamphetamine (MDMA) and R(−)-MDMA Trained Mice

    No full text
    3,4-Methylenedioxymethamphetamine (MDMA) is a substituted phenethylamine more commonly known as the drug of abuse “ecstasy.” The acute and persistent neurochemical effects of MDMA in the mice are distinct from those in other species. MDMA shares biological effects with both amphetamine-type stimulants and mescaline-type hallucinogens, which may be attributable to distinct effects of its two enantiomers, both of which are active in vivo. In this regard, among the substituted phenethylamines, R(−)-enantiomers tend to have hallucinogen-like effects, whereas S(+)-enantiomers tend to have stimulant-like effects. In the present study, mice were trained to discriminate S(+)- or R(−)-MDMA from vehicle. Drug substitution tests were then undertaken with the structurally similar phenethylamine dopamine/norepinephrine releaser S(+)-amphetamine, the structurally dissimilar tropane nonselective monoamine reuptake inhibitor cocaine, the structurally similar phenethylamine 5-hydroxytryptamine (5-HT)2A agonist 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7), and the structurally dissimilar mixed action tryptamine 5-HT2A agonist/monoamine reuptake inhibitor N,N-dipropyltryptamine (DPT). S(+)-amphetamine fully substituted in the S(+)-MDMA-treated animals but did not substitute for the R(−)-MDMA cue. 2C-T-7 fully substituted in the R(−)-MDMA-trained animals but did not substitute for the S(+)-MDMA cue. Cocaine and DPT substituted for both training drugs, but whereas cocaine was more potent in S(+)-MDMA-trained mice, DPT was more potent in R(−)-MDMA-trained mice. These data suggest that qualitative differences in the discriminative stimulus effects of each stereoisomer of MDMA exist in mice and further our understanding of the complex nature of the interoceptive effects of MDMA

    Endocrine and Neurochemical Effects of 3,4-Methylenedioxymethamphetamine and Its Stereoisomers in Rhesus Monkeys

    No full text
    3,4-Methylenedioxymethamphetamine (MDMA) is an amphetamine derivative that elicits complex biological effects in humans. One plausible mechanism for this phenomenon is that racemic MDMA is composed of two stereoisomers that exhibit qualitatively different pharmacological effects. In support of this, studies have shown that R(−)-MDMA tends to have hallucinogen-like effects, whereas S(+)-MDMA tends to have psychomotor stimulant-like effects. However, relatively little is known about whether these stereoisomers engender different endocrine and neurochemical effects. In the present study, the endocrine and neurochemical effects of each stereoisomer and the racemate were assessed in four rhesus monkeys after intravenous delivery at doses (1–3 mg/kg) that approximated voluntary self-administration by rhesus monkeys and human recreational users. Specifically, fluorescence-based enzyme-linked immunosorbent assay was used to assess plasma prolactin concentrations, and in vivo microdialysis was used to assess extracellular dopamine and serotonin concentrations in the dorsal striatum. R(−)-MDMA, but not S(+)-MDMA, significantly increased plasma prolactin levels and the effects of S,R(±)-MDMA were intermediate to each of its component stereoisomers. Although S(+)-MDMA did not alter prolactin levels, it did significantly increase extracellular serotonin concentrations. In addition, S(+)-MDMA, but not R(−)-MDMA, significantly increased dopamine concentrations. Furthermore, as in the prolactin experiment, the effects of the racemate were intermediate to each of the stereoisomers. These studies demonstrate the stereoisomers of MDMA engender qualitatively different endocrine and neurochemical effects, strengthening the inference that differences in these stereoisomers might be the mechanism producing the complex biological effects of the racemic mixture of MDMA in humans

    Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    No full text
    RATIONALE: 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT(2A) receptors in vitro, but has not been behaviorally characterized. OBJECTIVE: 25CN-NBOH was compared to the traditional phenethylamine hallucinogen R(−)-2,5-dimethoxy-4-iodoamphetamine (DOI) using mouse models of drug-elicited head twitch behavior and drug discrimination. METHODS: Drug-elicited head twitches were quantified for 10 min following administration of various doses of either DOI or 25CN-NBOH, with and without pretreatments of 0.01 mg/kg 5-HT(2A) antagonist M100907 or 3.0 mg/kg 5-HT(2C) antagonist RS102221. The capacity of 25CN-NBOH to attenuate DOI-elicited head twitch was also investigated. Mice were trained to discriminate DOI or M100907 from saline, and 25CN-NBOH was tested for generalization. RESULTS: 25CN-NBOH induced a head twitch response in the mouse that was lower in magnitude than that of DOI, blocked by M100907, but not altered by RS102221. DOI-elicited head twitch was dose-dependently attenuated by 25CN-NBOH pretreatment. 25CN-NBOH produced an intermediate degree of generalization (55%) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. CONCLUSIONS: 25CN-NBOH was behaviorally active, but less effective than DOI in two mouse models of hallucinogenic effects. The effectiveness with which M100907 antagonized the behavioral actions of 25CN-NBOH strongly suggests that the 5-HT(2A) receptor is an important site of agonist action for this compound in vivo
    corecore