3,702 research outputs found

    The density matrix renormalization group method. Application to the PPP model of a cyclic polyene chain

    Full text link
    The density matrix renormalization group (DMRG) method introduced by White for the study of strongly interacting electron systems is reviewed; the method is variational and considers a system of localized electrons as the union of two adjacent fragments A, B. A density matrix rho is introduced, whose eigenvectors corresponding to the largest eigenvalues are the most significant, the most probable states of A in the presence of B; these states are retained, while states corresponding to small eigenvalues of rho are neglected. It is conjectured that the decreasing behaviour of the eigenvalues is gaussian. The DMRG method is tested on the Pariser-Parr-Pople Hamiltonian of a cyclic polyene (CH)_N up to N=34. A Hilbert space of dimension 5 x 10^+18 is explored. The ground state energy is 10^-3 eV within the full CI value in the case N=18. The DMRG method compares favourably also with coupled cluster approximations. The unrestricted Hartree-Fock solution (which presents spin density waves) is briefly reviewed, and a comparison is made with the DMRG energy values. Finally, the spin-spin and density-density correlation functions are computed; the results suggest that the antiferromagnetic order of the exact solution does not extend up to large distances but exists locally. No charge density waves are present.Comment: 8 pages, RevTex, 2 figures, to be published in the Journal of Chemical Physic

    The Hubbard model on a complete graph: Exact Analytical results

    Full text link
    We derive the analytical expression of the ground state of the Hubbard model with unconstrained hopping at half filling and for arbitrary lattice sites.Comment: Email:[email protected]

    Conserving and gapless approximations for the composite bosons in terms of the constituent fermions

    Full text link
    A long-standing problem with the many-body approximations for interacting condensed bosons has been the dichotomy between the ``conserving'' and ``gapless'' approximations, which either obey the conservations laws or satisfy the Hugenholtz-Pines condition for a gapless excitation spectrum, in the order. It is here shown that such a dichotomy does not exist for a system of composite bosons, which form as bound-fermion pairs in the strong-coupling limit of the fermionic attraction. By starting from the constituent fermions, for which conserving approximations can be constructed for any value of the mutual attraction according to the Baym-Kadanoff prescriptions, it is shown that these approximations also result in a gapless excitation spectrum for the boson-like propagators in the broken-symmetry phase. This holds provided the corresponding equations for the fermionic single- and two-particle Green's functions are solved self-consistently.Comment: 4 pages, 1 figur

    Efficient and Effective Query Auto-Completion

    Full text link
    Query Auto-Completion (QAC) is an ubiquitous feature of modern textual search systems, suggesting possible ways of completing the query being typed by the user. Efficiency is crucial to make the system have a real-time responsiveness when operating in the million-scale search space. Prior work has extensively advocated the use of a trie data structure for fast prefix-search operations in compact space. However, searching by prefix has little discovery power in that only completions that are prefixed by the query are returned. This may impact negatively the effectiveness of the QAC system, with a consequent monetary loss for real applications like Web Search Engines and eCommerce. In this work we describe the implementation that empowers a new QAC system at eBay, and discuss its efficiency/effectiveness in relation to other approaches at the state-of-the-art. The solution is based on the combination of an inverted index with succinct data structures, a much less explored direction in the literature. This system is replacing the previous implementation based on Apache SOLR that was not always able to meet the required service-level-agreement.Comment: Published in SIGIR 202

    Tuning of coupling modes in laterally parallel double open quantum dots

    Full text link
    We consider electronic transport through laterally parallel double open quantum dots embedded in a quantum wire in a perpendicular magnetic field. The coupling modes of the dots are tunable by adjusting the strength of a central barrier and the applied magnetic field. Probability density and electron current density are calculated to demonstrate transport effects including magnetic blocking, magnetic turbulence, and a hole-like quasibound state feature. Fano to dip line-shape crossover in the conductance is found by varying the magnetic field.Comment: RevTeX, 13 pages with 18 included postscript figures, high resolution version is available at http://hartree.raunvis.hi.is/~vidar/Rann/CSTVG_DOQD_05.pd

    The Optimal Inhomogeneity for Superconductivity: Finite Size Studies

    Full text link
    We report the results of exact diagonalization studies of Hubbard models on a 4×44\times 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals tt and t′t^{\prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion UU and doped hole concentration, xx. We present evidence that superconductivity is strongest for UU of order the bandwidth, and intermediate inhomogeneity, 0<t′<t0 <t^\prime< t. The maximum value of the ``pair-binding energy'' we have found with purely repulsive interactions is Δpb=0.32t\Delta_{pb} = 0.32t for the checkerboard Hubbard model with U=8tU=8t and t′=0.5tt^\prime = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.Comment: 8 pages, 9 figures; minor revisions; more references adde

    Entanglement, Mixedness, and Spin-Flip Symmetry in Multiple-Qubit Systems

    Full text link
    A relationship between a recently introduced multipartite entanglement measure, state mixedness, and spin-flip symmetry is established for any finite number of qubits. It is also shown that, within those classes of states invariant under the spin-flip transformation, there is a complementarity relation between multipartite entanglement and mixedness. A number of example classes of multiple-qubit systems are studied in light of this relationship.Comment: To appear in Physical Review A; submitted 14 May 200
    • …
    corecore