18 research outputs found

    Inter-annual decrease in pulse rate and peak frequency of Southeast Pacific blue whale song types

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Malige, F., Patris, J., Buchan, S. J., Stafford, K. M., Shabangu, F., Findlay, K., Hucke-Gaete, R., Neira, S., Clark, C. W., & Glotin, H. Inter-annual decrease in pulse rate and peak frequency of Southeast Pacific blue whale song types. Scientific Reports, 10(1), (2020): 8121, doi:10.1038/s41598-020-64613-0.A decrease in the frequency of two southeast Pacific blue whale song types was examined over decades, using acoustic data from several different sources in the eastern Pacific Ocean ranging between the Equator and Chilean Patagonia. The pulse rate of the song units as well as their peak frequency were measured using two different methods (summed auto-correlation and Fourier transform). The sources of error associated with each measurement were assessed. There was a linear decline in both parameters for the more common song type (southeast Pacific song type n.2) between 1997 to 2017. An abbreviated analysis, also showed a frequency decline in the scarcer southeast Pacific song type n.1 between 1970 to 2014, revealing that both song types are declining at similar rates. We discussed the use of measuring both pulse rate and peak frequency to examine the frequency decline. Finally, a comparison of the rates of frequency decline with other song types reported in the literature and a discussion on the reasons of the frequency shift are presented.The authors thank the help of Explorasub diving center (Chile), Agrupación turística Chañaral de Aceituno (Chile), ONG Eutropia (Chile), Valparaiso university (Chile), the international institutions and research programs CTBTO, IWC, BRILAM STIC AmSud 17-STIC-01. S.J.B. thanks support from the Center for Oceanographic Research COPAS Sur-Austral, CONICYT PIA PFB31, Biology Department of Woods Hole Oceanographic Institution, the Office of Naval Research Global (awards N62909-16-2214 and N00014-17-2606), and a grant to the Centro de Estudios Avanzados en Zonas Ãridas (CEAZA) “Programa Regional CONICYT R16A10003”. We thank SABIOD MI CNRS, EADM MaDICS CNRS and ANR-18-CE40-0014 SMILES supporting this research. We are grateful to colleagues at DCLDE 2018 and SOLAMAC 2018 conferences for useful comments on the preliminary version of this work. In this work we used only the free and open-source softwares Latex, Audacity and OCTAVE

    SEAmester – South Africa’s first class afloat

    Get PDF
    publisher versionFrom Introduction: Marine science is a highly competitive environment. The need to improve the cohort of South African postgraduates, who would be recognised both nationally and internationally for their scientific excellence, is crucial. It is possible to attract students early on in their careers to this discipline via cutting-edge science, technology and unique field experiences. Through the engagement of students with real-life experiences such as SEAmester, universities supporting marine science postgraduate degree programmes can attract a sustainable throughput of numerically proficient students. By achieving a more quantitative and experienced input into our postgraduate degree programmes, we will, as a scientific community, greatly improve our long-term capabilities to accurately measure, model and predict the impacts of current climate change scenarios. The short-term goal is to attract and establish a cohort of proficient marine and atmospheric science graduates who will contribute to filling the capacity needs of South African marine science as a whole. The SEAmester programme, by involving researchers from across all the relevant disciplines and tertiary institutions, provides an opportunity to build a network of collaborative teaching within the marine field. In doing so, these researchers will foster and strengthen new and current collaborations between historically white and black universities (Figure 1). The long-term objective of SEAmester is to build critical mass within the marine sciences to ensure sustained growth of human capacity in marine science in South Africa – aligning closely with the current DST Research and Development strategies and the Operation Phakisa Oceans Economy initiative

    Developing Literacy Learning Model Based on Multi Literacy, Integrated, and Differentiated Concept at Primary School

    Get PDF
    The main issue addressed in this research is the low writing skills of primary school students. One of the reasons for this condition is that the existing model of writing literacy learning is not appropriate. The purpose of this study is to explain MID-based literacy teaching model and the impact of the model in increasing primary school students\u27 writing skills. This study used combined methods of exploratory type. The samples were elementary school students coming from six schools with three different characteristics. Based on the data analysis, it can be concluded that the implementation of MID-based literacy learning model has proven to signi cantly contribute to the improvement of students\u27 writing skills. Taking place in all sample schools, the improvement may suggest that the model ts not only to students with high- ability but also those with low-ability. Therefore, the MID-based literacy learning model is needed to improve the ability to write various text types appropriately

    Box and whisker plots showing the Antarctic blue whales vocalization rate trends for the Z- and D- calls detected over the summer months during the IWC SOWER surveys.

    No full text
    <p>The box represent the first quartile to the third quartile (the interquartile range), and the segment inside the box is the median. The whisker delineates 1.5 times the interquartile width, and the closed circles are observations that are outside the range covered by the whisker.</p

    False negative rates at different thresholds for Z- and D-calls using the 1997 (left) and 2009 (right) detection templates.

    No full text
    <p>False negative rates at different thresholds for Z- and D-calls using the 1997 (left) and 2009 (right) detection templates.</p

    RF model performance for blue whale call rates based on RMSPE and Spearmen’s rho.

    No full text
    <p>RF model performance for blue whale call rates based on RMSPE and Spearmen’s rho.</p

    Partial effects of the different predictors on D-call rates of blue whales using the RF model.

    No full text
    <p>Plots indicate the marginal effect on blue whale call occurrence (y-axes) by each predictor variable (x-axis).</p

    Partial effects of the different predictors on Z-call rates of blue whales using the RF model.

    No full text
    <p>Plots indicate the marginal effect on blue whale call occurrence (y-axes) by each predictor variable (x-axis). Contribution of each variable to the model given below the function. Y-axes are different across all plots. Scale of x-axes is different across each predictor variable.</p

    Relative importance of the different predictors influencing the occurrence of blue whales based on RF.

    No full text
    <p>Relative variable importance is measured by residual sum of squares and expressed relative to the maximum.</p
    corecore