7 research outputs found

    The crosstalk between microbiota and metabolites in AP mice: an analysis based on metagenomics and untargeted metabolomics

    Get PDF
    Background and purposeMicrobiome dysfunction is known to aggravate acute pancreatitis (AP); however, the relationship between this dysfunction and metabolite alterations is not fully understood. This study explored the crosstalk between the microbiome and metabolites in AP mice.MethodsExperimental AP models were established by injecting C57/BL mice with seven doses of cerulein and one dose of lipopolysaccharide (LPS). Metagenomics and untargeted metabolomics were used to identify systemic disturbances in the microbiome and metabolites, respectively, during the progression of AP.ResultsThe gut microbiome of AP mice primarily included Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, and “core microbiota” characterized by an increase in Proteobacteria and a decrease in Actinobacteria. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that significantly different microbes were involved in several signaling networks. Untargeted metabolomics identified 872 metabolites, of which lipids and lipid-like molecules were the most impacted. An integrated analysis of metagenomics and metabolomics indicated that acetate kinase (ackA) gene expression was associated with various gut microbiota, including Alistipes, Butyricimonas, and Lactobacillus, and was strongly correlated with the metabolite daphnoretin. The functional gene, O-acetyl-L-serine sulfhydrylase (cysK), was associated with Alistipes, Jeotgalicoccus, and Lactobacillus, and linked to bufalin and phlorobenzophenone metabolite production.ConclusionThis study identified the relationship between the gut microbiome and metabolite levels during AP, especially the Lactobacillus-, Alistipes-, and Butyricimonas-associated functional genes, ackA and cysK. Expression of these genes was significantly correlated to the production of the anti-inflammatory and antitumor metabolites daphnoretin and bufalin

    An essential role for sulfur in sulfide-silicate melt partitioning of gold and magmatic gold transport at subduction settings

    Get PDF
    Sulfide-silicate melt partitioning controls the behavior of gold in magmas, which is critical for understanding the Earth's deep gold cycle and formation of gold deposits. However, the mechanisms that control the sulfide-silicate melt partitioning of gold remain largely unknown. Here we present constraints from laboratory experiments on the partition coefficient of gold between monosulfide-solid-solution (MSS) and silicate melt (DAuMSS/SM) under conditions relevant for magmatism at subduction settings. Thirty-five experiments were performed in Au capsules to determine DAuMSS/SM at 950-1050°C, 0.5-3 GPa, oxygen fugacity (fO2) of ∼FMQ-1.7 to FMQ+2.7 (FMQ refers to the fayalite-magnetite-quartz buffer), and sulfur fugacity (fS2) of −2.2 to 2.1, using a piston cylinder apparatus. The silicate melt composition changes from dry to hydrous andesite to rhyolite. The results obtained from electron microprobe and laser-ablation ICP-MS analyses show that the gold solubility in silicate melts ranges from 0.01 to 55.3 ppm and is strongly correlated with the melt sulfur content [S]melt at fO2 of ∼FMQ-1.7 to FMQ+1.6, which can be explained by the formation of complex Au-S species in the silicate melts. The gold solubility in MSS ranges from 130 to 2800 ppm, which is mainly controlled by fS2. DAuMSS/SM ranges from 10 to 14000 at fO2 of ∼FMQ-1.7 to FMQ+1.6, the large variation of which can be fully explained by combined [S]melt and fS2. Therefore, all of the parameters that can directly affect [S]melt and fS2, such as alkali metals, water, FeO, and fO2, can indirectly affect DAuMSS/SM. The mechanisms that control the sulfide-silicate melt partitioning of gold and the other chalcophile elements, such as Ni, Re, and Mo, differ significantly. This is because gold is dissolved mainly as Au-S species in the silicate melts, while the other chalcophile elements are dissolved mainly as metal oxides in the silicate melts. Applying the correlation between DAuMSS/SM and [S]melt to slab melting and arc magmatic differentiation under different redox conditions, we find that ancient to modern slab melts carry negligible to less than 25% of the slab gold to the subarc mantle; however, gold-enrichment can occur in MSS-saturated arc magmas that have differentiated under moderately oxidized conditions with fO2 between FMQ and FMQ+1.6, in particular if the magmatic crystallization follows a fractional crystallization model. We conclude that moderately oxidized magmas with high contents of alkali metals, sulfur, and water, owing to their low DAuMSS/SM and efficient magma-to-fluid transfer of gold and sulfur, have a high potential to form gold deposits

    Integrating bulk and single-cell RNA sequencing data reveals the relationship between intratumor microbiome signature and host metabolic heterogeneity in breast cancer

    Get PDF
    IntroductionNowadays, it has been recognized that gut microbiome can indirectly modulate cancer susceptibility or progression. However, whether intratumor microbes are parasitic, symbiotic, or merely bystanders in breast cancer is not fully understood. Microbial metabolite plays a pivotal role in the interaction of host and microbe via regulating mitochondrial and other metabolic pathways. And the relationship between tumor-resident microbiota and cancer metabolism remains an open question.Methods1085 breast cancer patients with normalized intratumor microbial abundance data and 32 single-cell RNA sequencing samples were retrieved from public datasets. We used the gene set variation analysis to evaluate the various metabolic activities of breast cancer samples. Furthermore, we applied Scissor method to identify microbe-associated cell subpopulations from single-cell data. Then, we conducted comprehensive bioinformatic analyses to explore the association between host and microbe in breast cancer.ResultsHere, we found that the metabolic status of breast cancer cells was highly plastic, and some microbial genera were significantly correlated with cancer metabolic activity. We identified two distinct clusters based on microbial abundance and tumor metabolism data. And dysregulation of the metabolic pathway was observed among different cell types. Metabolism-related microbial scores were calculated to predict overall survival in patients with breast cancer. Furthermore, the microbial abundance of the specific genus was associated with gene mutation due to possible microbe-mediated mutagenesis. The infiltrating immune cell compositions, including regulatory T cells and activated NK cells, were significantly associated with the metabolism-related intratumor microbes, as indicated in the Mantel test analysis. Moreover, the mammary metabolism-related microbes were related to T cell exclusion and response to immunotherapy.ConclusionsOverall, the exploratory study shed light on the potential role of the metabolism-related microbiome in breast cancer patients. And the novel treatment will be realized by further investigating the metabolic disturbance in host and intratumor microbial cells

    Carfilzomib relieves pancreatitis-initiated pancreatic ductal adenocarcinoma by inhibiting high-temperature requirement protein A1

    No full text
    Abstract Pancreatitis is a crucial risk factor for pancreatic ductal adenocarcinoma (PDAC), and our previous study had proved high-temperature requirement protein A1 (HTRA1) exacerbates pancreatitis insult; however, the function and mechanism of HTRA1 in pancreatitis-initiated PDAC is still unclear. In the present paper, we clarified the expression of HTRA1 in PDAC using bioinformatics and immunohistochemistry of tissue chip, and found that HTRA1 is significantly upregulated in PDAC. Moreover, the proliferation, migration, invasion and adhesion of PANC-1 and SW1990 cells were promoted by overexpression of HTRA1, but inhibited by knockdown of HTRA1. Meanwhile, we found that HTRA1 arrested PANC-1 and SW1990 cells at G2/M phase. Mechanistically, HTRA1 interacted with CDK1 protein, and CDK1 inhibitor reversed the malignant phenotype of PANC-1 and pancreatitis-initiated PDAC activated by HTRA1 overexpression. Finally, we discovered a small molecule drug that can inhibit HTRA1, carfilzomib, which has been proven to inhibit the biological functions of tumor cells in vitro and intercept the progression of pancreatitis-initiated PDAC in vivo. In conclusion, the activation of HTRA1-CDK1 pathway promotes the malignant phenotype of tumor cells by blocking the cell cycle at the G2/M phase, thereby accelerating pancreatitis-initiated PDAC. Carfilzomib is an innovative candidate drug that can inhibit pancreatitis-initiated PDAC through targeted inhibition of HTRA1
    corecore