16 research outputs found

    The Synthesis and Application of Nitrogen-Doped Graphene Quantum Dots on Brilliant Blue Detection

    No full text
    Nitrogen-doped graphene quantum dots had been successfully synthesized and characterized by using transmission electron microscope, X-ray photoelectron spectroscopy, absorbance spectrum, fluorescence emission spectrum, and fluorescence decay curve. TEM results indicated that the diameters of the as-prepared nitrogen-doped graphene quantum dots were in the range of 2 - 5 nm and the lattice space is about 0.276 nm; Raman spectrum result indicated that there were two characteristic peaks, generally named D (~1408 cm−1) and G (~1640 cm−1) bands; both TEM and Raman spectrum results indicated that the as-synthesized product was graphene quantum dots. Deconvoluted high resolution XPS spectra for C1s, O1s, and N1s results indicated that there are -NH-, -COOH, and -OH groups on the surface of nitrogen-doped graphene quantum dot. Fluorescence emission spectrum indicated that the maximum fluorescence emission spectrum of nitrogen-doped graphene quantum dots was blue shift about 30.1 nm and the average fluorescence decay time of nitrogen-doped graphene quantum dots increased about 2 ns, compared with graphene quantum dots without doping of nitrogen. Then, the as-prepared nitrogen-doped graphene quantum dots were used to quantitatively analyze brilliant blue based on the fluorescent quenching of graphene quantum dots, and the effect of pH and reaction time on this fluorescent quenching system was also obtained. Under selected condition, the linear regression equations were F0/F=0.0087 (brilliant blue) + 0.9553 and F0/F=0.01205 (brilliant blue) + 0.6695, and low detection limit was 3.776 μmol/L (3.776 nmol/mL). Once more diluted N-GQDs (0.05 mg/mL) were used, the low detection limit could reach 94.87 nmol/L. Then, temperature-dependent experiment, absorbance spectra, and dynamic fluorescence quenching rate constant were used to study the quenching mechanism; all results indicated that this quenching process was a static quenching process based on the formation of complex between nitrogen-doped graphene quantum dots and brilliant blue through hydrogen bond. Particularly, this method was used to quantitatively analyze the wine sample, of which results have a high consistence with the results of the spectrophotometric method; demonstrating this fluorescence quenching method could be used in practical sample application

    Modelling people’s perceived scene complexity of real-world environments using street-view panoramas and open geodata

    No full text
    Scene complexity refers to the difficulty of human perception and understanding of the specific environment. An environment is complex when it has many parts or components, and those parts or components interrelate with each other in multiple and random ways. People’s daily behaviors and spatial activities are often influenced by such complexity of real-world environments. The existing computational methods on modelling the perceived scene complexity of humans primarily focus on either visual or structural characteristics of the environment. This work presents a computational method to quantify the scene complexity of real-world environments comprehensively based on the visual, structural, and semantic characteristics, and assesses the performance of the technical approach with human-labelled “ground-truth” data. Specifically, we proposed a set of features to model the visual (e.g. color, shape, texture, and field of vision), structural (e.g. branches and nodes), and semantic (e.g. the number of POIs and their spatial patterns, well-known signs) aspects, based on street-view panoramas, road network data, POI data, and building footprint data. The results of the evaluation show that the proposed computational method is feasible to predict the perceived scene complexity of street-view environments, with an excellent Mean Absolute Error (MAE) of 0.1108 (on the scale of 1 to 5). The evaluation results on two additional cities further illustrate the high robustness of the proposed computational method. Regarding all conceivable combinations of the visual, structural, and semantic dimensions, considering all these three dimensions provides the best regression performance. In addition, the top-4 most important features for the modelling of scene complexity were: Spatial distribution of POIs, Number of POIs, Percentage of visible sky area, and Distance to the nearest street intersection. Interestingly, these 4 features all appeared in the top-5 feature list reported by human participants in the empirical studies. The employment of openly available data sources makes the proposed method widely applicable to many different cities in the whole world

    finitesizeeffectontheramanfrequencyofphononsinnanosemiconductors

    No full text
    A comprehensive study on Raman spectroscopy with different excitation wavelengths, sample sizes, and sample shapes for optic phonons (OPs) and acoustic phonons (APs) in polar and non-polar nano-semiconductors has been performed. The study affirms that the finite size effect does not appear in the OPs of polar nano-semiconductors, while it exists in all other types of phonons. The absence of the FSE is confirmed to originate from the long-range Frohlich interaction and the breaking of translation symmetry. The result indicates that the Raman spectra of OPs cannot be used as a method to characterize the scale and crystalline property of polar nano-semiconductors

    Metabolomics insights into the modulatory effects of long-term compound polysaccharide intake in high-fat diet-induced obese rats

    No full text
    Abstract Background Polysaccharides can alleviate obesity in mammals; however, studies on mechanism of this alleviation are limited. A few studies have indicated that polysaccharides improve obesity by regulating the metabolism of the body. Therefore, a metabolomics approach, consisting of high resolution nuclear magnetic resonance (NMR) spectroscopy and a multivariate statistical technique, was applied to explore the mechanism of the protective effects of lentinan and Flos Lonicera polysaccharides (LF) on high-fat diet (HFD) induced obesity. Methods In this study, rats were randomly divided into three groups: control diet (CD), HFD, and HFD supplemented with a mixture of lentinan and Flos Lonicera polysaccharide. Histopathological and clinical biochemical assessments were also conducted. A combination of a NMR metabolomics study and a multivariable statistical analysis method to distinguish urinary and fecal metabolites was applied. Results Significant obesity symptoms appeared in HFD rats (for example, significant weight gain, epididymal adipose accumulation and lipid deposition in hepatocytes), which was attenuated in the LF group. Additionally, the HFD induced a reduction of choline, citrate, pyruvate and glycerol and increased the levels of trimethylamine oxide (TMAO) and taurine. Of note, these metabolic disorders were reversed by LF intervention mainly through pathways of energy metabolism, choline metabolism and gut microbiota metabolism. Conclusions LF supplementation had a re-balancing effect on the disturbed metabolic pathways in the obese body. The results of this study validate the therapeutic effect of the compound polysaccharide--LF in obesity and described the biochemical and metabolic mechanisms involved

    Polymorphisms of the artemisinin resistant marker (K13) in Plasmodium falciparum parasite populations of Grande Comore Island 10 years after artemisinin combination therapy

    No full text
    Abstract Background Plasmodium falciparum malaria is a significant public health problem in Comoros, and artemisinin combination therapy (ACT) remains the first choice for treating acute uncomplicated P. falciparum. The emergence and spread of artemisinin-resistant P. falciparum in Southeast Asia, associated with mutations in K13-propeller gene, poses a potential threat to ACT efficacy. Detection of mutations in the P. falciparum K13-propeller gene may provide the first-hand information on changes in parasite susceptibility to artemisinin. The objective of this study is to determinate the prevalence of mutant K13-propeller gene among the P. falciparum isolates collected from Grande Comore Island, Union of Comoros, where ACT has been in use since 2004. Methods A total of 207 P. falciparum clinical isolates were collected from the island during March 2006 and October 2007 (n = 118) and March 2013 and December 2014 (n = 89). All isolates were analysed for single nucleotide polymorphisms (SNPs) and haplotypes in the K13-propeller gene using nested PCR and DNA sequencing. Results Only three 2006–2007 samples carried SNPs in the K13-propeller gene, one having a synonymous (G538G) and the other having two non-synonymous (S477Y and D584E) substitutions leading to two mutated haplotypes (2.2 %, 2/95). Three synonymous mutations (R471R, Y500Y, and G538G) (5.9 %, 5/85) and 7 non-synonymous substitutions (21.2 %, 18/85) with nine mutated haplotypes (18.8 %, 16/85) were found in isolates from 2013 to 2014. However, none of the polymorphisms associated with artemisinin-resistance in Southeast Asia was detected from any of the parasites examined. Conclusion This study showed increased K13-propeller gene diversity among P. falciparum populations on the Island over the course of 8 years (2006–2014). Nevertheless, none of the polymorphisms known to be associated with artemisinin resistance in Asia was detected in the parasite populations examined. Our data suggest that P. falciparum populations in Grande Comore are still effectively susceptible to artemisinin. Our results provide insights into P. falciparum populations regarding mutations in the gene associated with artemisinin resistance and will be useful for developing and updating anti-malarial guidance in Comoros
    corecore