147 research outputs found

    Summertime CO2 fluxes from tundra of Ny-Ã…lesund in the High Arctic

    Get PDF
    The Arctic ecosystem, especially High Arctic tundra, plays a unique role in the global carbon cycle because of amplified warming in the region. However, relatively little research has been conducted in High Arctic tundra compared with other global ecosystems. In the present work, summertime net ecosystem exchange (NEE), ecosystem respiration (ER), and photosynthesis were investigated at six tundra sites (DM1–DM6) on Ny-Ålesund in the High Arctic. NEE at the tundra sites varied between a weak sink and strong source (−3.3 to 19.0 mg CO2·m−2·h−1). ER and gross photosynthesis were 42.8 to 92.9 mg CO2·m−2·h−1 and 54.7 to 108.7 mg CO2·m−2·h−1, respectively. The NEE variations showed a significant correlation with photosynthesis rates, whereas no significant correlation was found with ecosystem respiration, indicating that NEE variations across the region were controlled by differences in net uptake of CO2 owing to photosynthesis, rather than by variations in ER. A Q10 value of 1.80 indicated weak temperature sensitivity of tundra ER and its response to future global warming. NEE and gross photosynthesis also showed relatively strong correlations with C/N ratio. The tundra ER, NEE, and gross photosynthesis showed variations over slightly waterlogged wetland tundra, mesic and dry tundra. Overall, soil temperature, nutrients and moisture can be key effects on CO2 fluxes, ecosystem respiration, and NEE in the High Arctic

    Structural integrity and characteristics at lattice and nanometre levels of ZrN polycrystalline irradiated by 4 MeV Au ions

    Get PDF
    We report an as-hot-pressed zirconium nitride polycrystalline with its primary crystal structure maintained no change but lattice defects and features were introduced at nanometre-scale after being irradiated by 4 MeV Au 2+ with a total fluence of 5 × 10 16 /cm 2 . The variation of grey-level seen in backscattered electron images and electron backscattered diffraction maps directly evidenced the structure integrity of the polycrystalline ZrN is well maintained with no crystal structure change of ZrN. The irradiation depth had no relevance to crystal orientation, and Au deposition peaked at a depth of ∼0.58 μm with a near-Gaussian distribution. Within a depth < 0.58 μm, long dislocation lines were developed with a Burgers vector of [01¯] b /2 and density 3.2 × 10 14 1/m 2 ; beyond this depth, dislocation loops were formed with much higher density. In the ionization zone, cubic ZrO 2 crystallites precipitated in a size of ∼5 nm. The irradiation damage processes are discussed based on the observed features

    Artificial intelligence breast ultrasound and handheld ultrasound in the BI-RADS categorization of breast lesions: A pilot head to head comparison study in screening program

    Get PDF
    BackgroundArtificial intelligence breast ultrasound diagnostic system (AIBUS) has been introduced as an alternative approach for handheld ultrasound (HHUS), while their results in BI-RADS categorization has not been compared.MethodsThis pilot study was based on a screening program conducted from May 2020 to October 2020 in southeast China. All the participants who received both HHUS and AIBUS were included in the study (N = 344). The ultrasound videos after AIBUS scanning were independently watched by a senior radiologist and a junior radiologist. Agreement rate and weighted Kappa value were used to compare their results in BI-RADS categorization with HHUS.ResultsThe detection rate of breast nodules by HHUS was 14.83%, while the detection rates were 34.01% for AIBUS videos watched by a senior radiologist and 35.76% when watched by a junior radiologist. After AIBUS scanning, the weighted Kappa value for BI-RADS categorization between videos watched by senior radiologists and HHUS was 0.497 (p &lt; 0.001) with an agreement rate of 78.8%, indicating its potential use in breast cancer screening. However, the Kappa value of AIBUS videos watched by junior radiologist was 0.39, when comparing to HHUS.ConclusionAIBUS breast scan can obtain relatively clear images and detect more breast nodules. The results of AIBUS scanning watched by senior radiologists are moderately consistent with HHUS and might be used in screening practice, especially in primary health care with limited numbers of radiologists

    Association study of SNP locus for color related traits in herbaceous peony (Paeonia lactiflora Pall.) using SLAF-seq

    Get PDF
    Paeonia lactiflora Pall. (P. lactiflora) is a famous ornamental plant with showy and colorful flowers that has been domesticated in China for 4,000 years. However, the genetic basis of phenotypic variation and genealogical relationships in P. lactiflora population is poorly understood due to limited genetic information, which brings about bottlenecks in the application of effective and efficient breeding strategies. Understanding the genetic basis of color-related traits is essential for improving flower color by marker-assisted selection (MAS). In this study, a high throughput sequencing of 99 diploid P. lactiflora accessions via specific-locus amplified fragment sequencing (SLAF-seq) technology was performed. In total, 4,383,645 SLAF tags were developed from 99 P. lactiflora accessions with an average sequencing depth of 20.81 for each SLAF tag. A total of 2,954,574 single nucleotide polymorphisms (SNPs) were identified from all SLAF tags. The population structure and phylogenetic analysis showed that P. lactiflora population used in this study could be divided into six divergent groups. Through association study using Mixed linear model (MLM), we further identified 40 SNPs that were significantly positively associated with petal color. Moreover, a derived cleaved amplified polymorphism (dCAPS) marker that was designed based on the SLAF tag 270512F co-segregated with flower colors in P. lactiflora population. Taken together, our results provide valuable insights into the application of MAS in P. lactiflora breeding programs

    In situ poling X-ray diffraction studies of lead-free BiFeO3–SrTiO3 ceramics

    Get PDF
    The origin of the large electrostrain in BiFeO3-BaTiO3 (BF-BT) ceramics is controversial and has been attributed to either a field-induced transition to a long-range ferroelectric (FE) state or to multi-symmetry, polar nanoregions within a pseudocubic matrix whose vectors approximately align with the direction of the applied field. The (1-x)BiFeO3-xSrTiO3 (BF-xST) solid solution is structurally and microstructurally similar to BF-BT and provides a further case study to assess the origin of electrostrain. In BF-xST, electrostrain is optimized at x = 0.4 (0.15%) which zero field, room temperature full-pattern X-ray diffraction (XRD) Rietveld refinement and scanning/transmission electron microscopy suggest is composed of 15% rhombohedral (R) cores, surrounded by 85% pseudocubic (PC) shells. In-situ poling synchrotron XRD reveals that all peaks remain singlet and exhibit no change in full width half maximum up to 100 kV cm−1, confirming the absence of long-range FE order and the retention of short-range polar order, despite the large applied field. Strain anisotropy (calculated from individual peaks) of ε220 > ε111 > ε200 and the associated strain orientation distribution however, indicate the existence of local orthorhombic (O), R and tetragonal (T) symmetries. The data therefore imply the existence under poling of multi-symmetry polar nanoregions in BF-0.4ST rather than a long FE phase, supporting the model described by Wang and co-workers (2019) for BF-BT compositions

    Reduced He ion irradiation damage in ZrC-based high-entropy ceramics

    Get PDF
    Excellent irradiation resistance is the basic property of nuclear materials to keep nuclear safety. The high-entropy design has great potential to improve the irradiation resistance of the nuclear materials, which has been proven in alloys. However, whether or not high entropy can also improve the irradiation resistance of ceramics, especially the mechanism therein still needs to be uncovered. In this work, the irradiation and helium (He) behaviors of zirconium carbide (ZrC)-based high-entropy ceramics (HECs), i.e., (Zr0.2Ti0.2Nb0.2Ta0.2W0.2)C, were investigated and compared with those of ZrC under 540 keV He ion irradiation with a dose of 1×1017 cm−2 at room temperature and subsequent annealing. Both ZrC and (Zr0.2Ti0.2Nb0.2Ta0.2W0.2)C maintain lattice integrity after irradiation, while the irradiation-induced lattice expansion is smaller in (Zr0.2Ti0.2Nb0.2Ta0.2W0.2)C (0.78%) with highly thermodynamic stability than that in ZrC (0.91%). After annealing at 800 ℃, ZrC exhibits the residual 0.20% lattice expansion, while (Zr0.2Ti0.2Nb0.2Ta0.2W0.2)C shows only 0.10%. Full recovery of the lattice parameter (a) is achieved for both ceramics after annealing at 1500 ℃. In addition, the high entropy in the meantime brings about the favorable structural evolution phenomena including smaller He bubbles that are evenly distributed without abnormal coarsening or aggregation, segregation, and shorter and sparser dislocation. The excellent irradiation resistance is related to the high-entropy-induced phase stability, sluggish diffusion of defects, and stress dispersion along with the production of vacancies by valence compensation. The present study indicates a high potential of high-entropy carbides in irradiation resistance applications

    Discrete π-Stacks from Self-Assembled Perylenediimide Analogues.

    Get PDF
    The formation of well-defined finite-sized aggregates represents an attractive goal in supramolecular chemistry. In particular, construction of discrete π-stacked dye assemblies remains a challenge. Reported here is the design and synthesis of a novel type of discrete π-stacked aggregate from two comparable perylenediimide (PDI) dyads (PEP and PBP). The criss-cross PEP-PBP dimers in solution and (PBP-PEP)-(PEP-PBP) tetramers in the solid state are well elucidated using single-crystal X-ray diffraction, dynamic light scattering, and diffusion-ordered NMR spectroscopy. Extensive π-π stacking between the PDI units of PEP and PBP as well as repulsive interactions of swallow-tailed alkyl substituents are responsible for the selective formation of discrete dimer and tetramer stacks. Our results reveal a new approach to preparing discrete π stacks that are appealing for making assemblies with well-defined optoelectronic properties

    Superior energy density through tailored dopant strategies in multilayer ceramic capacitors

    Get PDF
    The Gerson–Marshall (1959) relationship predicts an increase in dielectric breakdown strength (BDS) and therefore, recoverable energy density (Wrec) with decreasing dielectric layer thickness. This relationship only operates however, if the total resistivity of the dielectric is sufficiently high and the electrical microstructure is homogeneous (no short circuit diffusion paths). BiFeO3–SrTiO3 (BF–ST) is a promising base for developing high energy density capacitors but Bi-rich compositions which have the highest polarisability per unit volume are ferroelectric rather than relaxor and are electrically too conductive. Here, we present a systematic strategy to optimise BDS and maximum polarisation via: (i) Nb-doping to increase resistivity by eliminating hole conduction and promoting electrical homogeneity and (ii) alloying with a third perovskite end-member, BiMg2/3Nb1/3O3 (BMN), to reduce long range polar coupling without decreasing the average ionic polarisability. These strategies result in an increase in BDS to give Wrec = 8.2 J cm−3 at 460 kV cm−1 for BF–ST–0.03Nb–0.1BMN ceramics, which when incorporated in a multilayer capacitor with dielectric layers of 8 μm thickness gives BDS > 1000 kV cm−1 and Wrec = 15.8 J cm−3

    Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics

    Get PDF
    The mechanisms underpinning high energy storage density in lead-free Ag1–3xNdxTayNb1-yO3 antiferroelectric (AFE) ceramics have been investigated. Rietveld refinements of in-situ synchrotron X-ray data reveal that the structure remains quadrupled and orthorhombic under electric field (E) but adopts a non-centrosymmetric space group, Pmc21, in which the cations exhibit a ferrielectric configuration. Nd and Ta doping both stabilize the AFE structure, thereby increasing the AFE-ferrielectric switching field from 150 to 350 kV cm−1. Domain size and correlation length of AFE/ferrielectric coupling reduce with Nd doping, leading to slimmer hysteresis loops. The maximum polarization (Pmax) is optimized through A-site aliovalent doping which also decreases electrical conductivity, permitting the application of a larger E. These effects combine to enhance energy storage density to give Wrec = 6.5 J cm−3 for Ag0.97Nd0.01Ta0.20Nb0.80O3
    • …
    corecore