4,895 research outputs found

    Higher spin AdS_3 supergravity and its dual CFT

    Full text link
    Vasiliev's higher spin supergravity theory on three dimensional anti-de Sitter space is studied and, in particular, the partition function is computed at one loop level. The dual conformal field theory is proposed to be the N=(2,2) CP^N Kazama-Suzuki model in two dimensions. The proposal is based on symmetry considerations and comparison of the bulk partition function with the conformal field theory. Our findings suggest that the theory is strong-weak self-dual.Comment: 36 page

    Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    Get PDF
    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high-temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials. High superconducting transition temperature is achieved when the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. Our result offers a principle guide to search for new high temperature superconductors.Comment: 12 pages, 5 figures, 1 table, 1 supplementary materia

    Low-Cost Virtual Reality System - PC Driven System

    Get PDF
    The concept of Virtual Reality has been around since early 1960s, but the availability and development of Virtual Reality systems were largely limited due to its nature of high cost and difficulty in maintenance. Until recently, thanks to the fast development of the modern technology, the idea of building Virtual Reality system using commodity-off-the-shelf hardware became feasible. By using Personal Computers, we have in this project developed a Low-Cost Distributed Virtual Reality system that is much cheaper, easier to maintain and mobile. In this project, the design of stereo vision, corner projection and distributed architecture had been discussed and applied in the implementation of the Virtual Reality system. User experiment had been conducted. The aim of the user experiment is to test the system for presence level, Slater, Usoh and Steed (SUS) questionnaire was used as an indication to the level of presence. Furthermore, network performance related to scene complexities were also evaluated. From these experiment, we have found that the Virtual Reality system developed creates a good level of presence to the participants and scene complexity would influence the roundtrip time of the network. Lastly, this paper concludes by discussing why the Low-Cost Virtual Reality system developed to be an effective Virtual Reality system

    Low-Cost Virtual Reality System (PS2-driven)

    Get PDF
    A low cost virtual reality system that generates corner projection using three PlayStation2 is presented. Two display stations each connected to one projector is used to provide panoramic view of the VR scene. A control station receives user input and broadcasts the instruction to the two display stations in order to update their respective camera positions and orientations. A demo application which immerses the user inside a glider flying through a night city has also been implemented. We report the performance of our system using random primitives. The benchmark revealed a gradual decline in frame rate in response to polygon counts in the scene. Polygon rate in our system remained near constant and does not vary with the polygon count on the screen. The results indicated for our system, a polygon count of 3540 on the screen with a refresh rate of 24fps is optimum in an interactive environment. Investigation on the relationship between roundtrip time and scene complexity revealed a significant positive correlation of (0.966). This suggests system response to user command can be delayed in a complex virtual environment

    Quantitative lipoprotein subclass and low molecular weight metabolite analysis in human serum and plasma by 1H NMR spectroscopy in a multilaboratory trial

    Get PDF
    We report an extensive 600 MHz NMR trial of a quantitative lipoprotein and small molecule measurements in human blood serum and plasma. Five centers with eleven 600 MHz NMR spectrometers were used to analyze 98 samples including: 20 QCs, 37 commercially sourced, paired serum and plasma samples and 2 National Institute of Science and Technology, NIST, reference material 1951c replicates. Samples were analyzed using rigorous protocols for sample preparation and experimental acquisition. A commercial lipoprotein subclass analysis was used to quantify 105 lipoprotein subclasses and 24 low molecular weight metabolites from the nuclear magnetic resonance, NMR, spectra. For all spectrometers, the instrument specific variance in measuring internal quality controls, QCs, was lower than the percentage described by the National Cholesterol Education Program, NCEP, criteria for lipid testing (triglycerides<2.7%, cholesterol<2.8%; LDL-cholesterol<2.8%; HDL-cholesterol<2.3%), showing exceptional reproducibility for direct quantitation of lipoproteins in both matrices. The average RSD for the 105 lipoprotein parameters in the 11 instruments was 4.6% and 3.9% for the two NIST samples while it was 38% and 40% for the 37 commercially sourced plasmas and sera, respectively, showing negligible analytical compared to biological variation. The coefficient of variance, CV, obtained for the quantification of the small molecules across the 11 spectrometers was below 15% for 20 out of the 24 metabolites analyzed. This study provides further evidence of the suitability of NMR for high-throughput lipoprotein subcomponent analysis and small molecule quantitation with the exceptional reproducibility required for clinical and other regulatory settings

    Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    Get PDF
    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level

    Rotating Higher Spin Partition Functions and Extended BMS Symmetries

    Get PDF
    We evaluate one-loop partition functions of higher-spin fields in thermal flat space with angular potentials; this computation is performed in arbitrary space-time dimension, and the result is a simple combination of Poincar\'e characters. We then focus on dimension three, showing that suitable products of one-loop partition functions coincide with vacuum characters of higher-spin asymptotic symmetry algebras at null infinity. These are extensions of the bms_3 algebra that emerges in pure gravity, and we propose a way to build their unitary representations and to compute the associated characters. We also extend our investigations to supergravity and to a class of gauge theories involving higher-spin fermionic fields.Comment: 58 pages; clarifications and references added; version to be published in JHE

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity

    A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    Get PDF
    A quantitative structure-property relationship (QSPR) study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR) and artificial neural network (ANN). The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds

    Gauss-Bonnet-Chern theorem on moduli space

    Full text link
    In this paper, we proved the Gauss-Bonnet-Chern theorem on moduli space of polarized Kahler manifolds. Using our results, we proved the rationality of the Chern-Weil forms (with respect to the Weil-Petersson metric) on CY moduli. As an application in physics, by the Ashok-Douglas theory, counting the number of flux compactifications of the type IIb string on a Calabi-Yau threefold is related to the integrations of various Chern-Weil forms. We proved that all these integrals are finite (and also rational).Comment: Final version, Journal ref adde
    • …
    corecore