104 research outputs found

    Cross-Scale Cost Aggregation for Stereo Matching

    Full text link
    Human beings process stereoscopic correspondence across multiple scales. However, this bio-inspiration is ignored by state-of-the-art cost aggregation methods for dense stereo correspondence. In this paper, a generic cross-scale cost aggregation framework is proposed to allow multi-scale interaction in cost aggregation. We firstly reformulate cost aggregation from a unified optimization perspective and show that different cost aggregation methods essentially differ in the choices of similarity kernels. Then, an inter-scale regularizer is introduced into optimization and solving this new optimization problem leads to the proposed framework. Since the regularization term is independent of the similarity kernel, various cost aggregation methods can be integrated into the proposed general framework. We show that the cross-scale framework is important as it effectively and efficiently expands state-of-the-art cost aggregation methods and leads to significant improvements, when evaluated on Middlebury, KITTI and New Tsukuba datasets.Comment: To Appear in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014 (poster, 29.88%

    Radiofrequency ablation can reverse the structural remodeling caused by frequent premature ventricular contractions originating from the right ventricular outflow tract even in a normal heart

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate whether frequent premature ventricular contractions originating from the right ventricular outflow tract remodel the cardiac structure and function in patients with a “seemingly normal heart” and whether radiofrequency ablation can reverse this remodeling. METHODS: Sixty-eight patients with idiopathic frequent premature ventricular contractions originating from the right ventricular outflow tract and normal heart structure and function were enrolled in this study. The patients were divided into three groups according to the therapeutic method: radiofrequency ablation group (24 cases), anti-arrhythmia drug group (26 cases), and control group (18 cases without any treatment). Clinical Registration number: ChiCTR-ONRC-12002834 RESULTS: The basic patient characteristics were comparable between the three groups, except for the premature ventricular contraction rate, which was significantly lower in the control group. After six months of follow up, the premature ventricular contraction rate was significantly reduced in the radiofrequency ablation group, which was accompanied by a significant decrease in the following cardiac cavity inner diameters, as determined by echocardiography: right atrium (33.33±3.78 vs. 30.05±2.60 mm, p = 0.001), right ventricle (23.24±2.40 vs. 21.05±2.16 mm, p = 0.020), and left ventricle (44.76±4.33 vs. 41.71±3.44 mm, p = 0.025). These results were similar in the anti-arrhythmia drug group, although this group exhibited a smaller extent of change (right atrium: 33.94±3.25 vs. 31.27±3.11 mm, p = 0.024; right ventricle: 22.97±3.09 vs. 21.64±2.33 mm, p = 0.049; left ventricle: 45.92±6.38 vs. 43.84±5.67 mm, p = 0.039), but not in the control group (p>;0.05). There was a tendency toward improvement in the cardiac functions in both the radiofrequency ablation and anti-arrhythmia drug groups. However, these differences were not statistically significant (p>;0.05). CONCLUSIONS: These results indicate that radiofrequency ablation can potentially reverse the cardiac remodeling caused by frequent premature ventricular contractions even in structurally normal hearts and that frequent premature ventricular contractions should be abated even in structurally normal hearts

    Double Dome and Reemergence of Superconductivity in Pristine 6R-TaS2 under Pressure

    Full text link
    Investigating the implications of interlayer coupling on superconductivity is essential for comprehending the intrinsic mechanisms of high temperature superconductors. Van der Waals heterojunctions have attracted extensive research due to their exotic interlayer coupling. Here, we present a natural heterojunction superconductor of 6R-TaS2 that demonstrates a double-dome of superconductivity, in addition to, the reemergence of superconducting under high pressures. Our first principles calculation shows that the first dome of superconductivity in 6R-TaS2 can be attributed to changes in interlayer coupling and charge transfer. The second superconducting dome and the reemergence of superconductivity can be ascribed to changes in the density of states resulting from Fermi surface reconstruction, in which the DOS of T-layer and S p-orbitals play a crucial role. We have reported the first observation in TMDs that non-metallic atoms playing a dominant role in the reemergence of superconducting and the influence of two Lifshitz transitions on superconducting properties

    Protectin conjugates in tissue regeneration 1 alleviates sepsis-induced acute lung injury by inhibiting ferroptosis

    Get PDF
    Background: Acute lung injury (ALI) is a common and serious complication of sepsis with high mortality. Ferroptosis, categorized as programmed cell death, contributes to the development of lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is an endogenous lipid mediator that exerts protective effects against multiorgan injury. However, the role of PCTR1 in the ferroptosis of sepsis-related ALI remains unknown. Methods: A pulmonary epithelial cell line and a mouse model of ALI stimulated with lipopolysaccharide (LPS) were established in vitro and in vivo. Ferroptosis biomarkers, including ferrous (Fe2+), glutathione (GSH), malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE), were assessed by relevant assay kits. Glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein levels were determined by western blotting. Lipid peroxides were examined by fluorescence microscopy and flow cytometry. Cell viability was determined by a CCK-8 assay kit. The ultrastructure of mitochondria was observed with transmission electron microscopy. Morphology and inflammatory cytokine levels predicted the severity of lung injury. Afterward, related inhibitors were used to explore the potential mechanism by which PCTR1 regulates ferroptosis. Results: PCTR1 treatment protected mice from LPS-induced lung injury, which was consistent with the effect of the ferroptosis inhibitor ferrostatin-1. PCTR1 treatment decreased Fe2+, PTGS2 and lipid reactive oxygen species (ROS) contents, increased GSH and GPX4 levels and ameliorated mitochondrial ultrastructural injury. Administration of LPS or the ferroptosis agonist RSL3 resulted in reduced cell viability, which was rescued by PCTR1. Mechanistically, inhibition of the PCTR1 receptor lipoxin A4 (ALX), protein kinase A (PKA) and transcription factor cAMP-response element binding protein (CREB) partly decreased PCTR1 upregulated GPX4 expression and a CREB inhibitor blocked the effects ofPCTR1 on ferroptosis inhibition and lung protection. Conclusion: This study suggests that PCTR1 suppresses LPS-induced ferroptosis via the ALX/PKA/CREB signaling pathway, which may offer promising therapeutic prospects in sepsis-related ALI

    Inhibition the ubiquitination of ENaC and Na,K-ATPase with erythropoietin promotes alveolar fluid clearance in sepsis-induced acute respiratory distress syndrome

    Get PDF
    Sepsis-induced acute respiratory distress syndrome (ARDS) causes significant fatalities worldwide and lacks pharmacological intervention. Alveolar fluid clearance (AFC) plays a pivotal role in the remission of ARDS and is markedly impaired in the pathogenesis of ARDS. Here, we demonstrated that erythropoietin could effectively ameliorate lung injury manifestations and lethality, restore lung function and promote AFC in a rat model of lipopolysaccharide (LPS)-induced ARDS. Moreover, it was proven that EPO-induced restoration of AFC occurs through triggering the total protein expression of ENaC and Na,K-ATPase channels, enhancing their protein abundance in the membrane, and suppressing their ubiquitination for degeneration. Mechanistically, the data indicated the possible involvement of EPOR/JAK2/STAT3/SGK1/Nedd4–2 signaling in this process, and the pharmacological inhibition of the pathway markedly eliminated the stimulating effects of EPO on ENaC and Na,K-ATPase, and subsequently reversed the augmentation of AFC by EPO. Consistently, in vitro studies of alveolar epithelial cells paralleled with that EPO upregulated the expression of ENaC and Na,K-ATPase, and patch-clamp studies further demonstrated that EPO substantially strengthened sodium ion currents. Collectively, EPO could effectively promote AFC by improving ENaC and Na,K-ATPase protein expression and abundance in the membrane, dependent on inhibition of ENaC and Na,K-ATPase ubiquitination, and resulting in diminishing LPS-associated lung injuries

    Topology hierarchy of transition metal dichalcogenides built from quantum spin Hall layers

    Full text link
    The evolution of the physical properties of two-dimensional material from monolayer limit to the bulk reveals unique consequences from dimension confinement and provides a distinct tuning knob for applications. Monolayer 1T'-phase transition metal dichalcogenides (1T'-TMDs) with ubiquitous quantum spin Hall (QSH) states are ideal two-dimensional building blocks of various three-dimensional topological phases. However, the stacking geometry was previously limited to the bulk 1T'-WTe2 type. Here, we introduce the novel 2M-TMDs consisting of translationally stacked 1T'-monolayers as promising material platforms with tunable inverted bandgaps and interlayer coupling. By performing advanced polarization-dependent angle-resolved photoemission spectroscopy as well as first-principles calculations on the electronic structure of 2M-TMDs, we revealed a topology hierarchy: 2M-WSe2, MoS2, and MoSe2 are weak topological insulators (WTIs), whereas 2M-WS2 is a strong topological insulator (STI). Further demonstration of topological phase transitions by tunning interlayer distance indicates that band inversion amplitude and interlayer coupling jointly determine different topological states in 2M-TMDs. We propose that 2M-TMDs are parent compounds of various exotic phases including topological superconductors and promise great application potentials in quantum electronics due to their flexibility in patterning with two-dimensional materials
    • …
    corecore