5 research outputs found

    Real-time stability of a hepatitis E vaccine (Hecolin®) demonstrated with potency assays and multifaceted physicochemical methods

    Get PDF
    The first prophylactic vaccine against hepatitis E virus (HEV), Hecolin®, was licensed in China. Recombinant p239 virus-like particle (VLP) is its active component with dimeric protein as the basic building block harboring the immuno dominant and neutralizing epitopes. The real time and real condition stability of the prefilled syringes for the vaccine was demonstrated using both in vivo mouse potency and in vitro antigenicity assays. A total of 12 lots of Hecolin® were assessed with a set of assays after storage at 2-8 °C for 24 months. The particle characteristics of p239 VLP recovered from the aluminum-containing adjuvant was assessed with different methods including analytical ultracentrifugation, high performance size exclusion chromatography and transmission electron microscopy. The thermal and conformational stability of the adsorbed antigen was assessed using differential scanning calorimetry. The protein integrity of the recovered p239 antigen was demonstrated using SDS-PAGE with silvering staining, LC-MS and MALDI-TOF MS. Most importantly, the binding activity to the neutralizing antibody or vaccine antigenicity was measured using an epitope-specific and real-time SPR assay and a monoclonal antibody-based sandwich ELISA. Taken together, the overall good stability of the Hecolin® prefilled syringes was demonstrated with unaltered molecular and functional attributes after storage at 2-8 °C for 24 months

    Case Report: Chronic hepatitis E virus Infection in an individual without evidence for immune deficiency

    Get PDF
    Chronic hepatitis E virus (HEV) infection occurs mainly in immunosuppressed populations. We describe an investigation of chronic HEV infection of genotype 3a in an individual without evidence for immune deficiency who presented hepatitis with significant HEV viremia and viral shedding. We monitored HEV RNA in plasma and stools, and assessed anti-HEV specific immune responses. The patient was without apparent immunodeficiency based on quantified results of white blood cell, lymphocyte, neutrophilic granulocyte, CD3+ T cell, CD4+ T cell, and CD8+ T cell counts and CD4/CD8 ratio, as well as total serum IgG, IgM, and IgA, which were in the normal range. Despite HEV specific cellular response and strong humoral immunity being observed, viral shedding persisted up to 109 IU/mL. After treatment with ribavirin combined with interferon, the indicators of liver function in the patient returned to normal, accompanied by complete suppression and clearance of HEV. These results indicate that HEV chronicity can also occur in individuals without evidence of immunodeficiency

    A Secreted Form of the Hepatitis E Virus ORF2 Protein: Design Strategy, Antigenicity and Immunogenicity

    No full text
    Hepatitis E virus (HEV) is an important public health burden worldwide, causing approximately 20 million infections and 70,000 deaths annually. The viral capsid protein is encoded by open reading frame 2 (ORF2) of the HEV genome. Most ORF2 protein present in body fluids is the glycosylated secreted form of the protein (ORF2S). A recent study suggested that ORF2S is not necessary for the HEV life cycle. A previously reported efficient HEV cell culture system can be used to understand the origin and life cycle of ORF2S but is not sufficient for functional research. A more rapid and productive method for yielding ORF2S could help to study its antigenicity and immunogenicity. In this study, the ORF2S (tPA) expression construct was designed as a candidate tool. A set of representative anti-HEV monoclonal antibodies was further used to map the functional antigenic sites in the candidates. ORF2S (tPA) was used to study antigenicity and immunogenicity. Indirect ELISA revealed that ORF2S (tPA) was not antigenically identical to HEV 239 antigen (p239). The ORF2S-specific antibodies were successfully induced in one-dose-vaccinated BALB/c mice. The ORF2S-specific antibody response was detected in plasma from HEV-infected patients. Recombinant ORF2S (tPA) can act as a decoy to against B cells. Altogether, our study presents a design strategy for ORF2S expression and indicates that ORF2S (tPA) can be used for functional and structural studies of the HEV life cycle

    Cryo-EM structures reveal the molecular basis of receptor-initiated coxsackievirus uncoating

    No full text
    Enterovirus uncoating receptors bind at the surface depression ("canyon") that encircles each capsid vertex causing the release of a host-derived lipid called "pocket factor" that is buried in a hydrophobic pocket formed by the major viral capsid protein, VP1. Coxsackievirus and adenovirus receptor (CAR) is a universal uncoating receptor of group B coxsackieviruses (CVB). Here, we present five high-resolution cryoEM structures of CVB representing different stages of virus infection. Structural comparisons show that the CAR penetrates deeper into the canyon than other uncoating receptors, leading to a cascade of events: collapse of the VP1 hydrophobic pocket, high-efficiency release of the pocket factor and viral uncoating and genome release under neutral pH, as compared with low pH. Furthermore, we identified a potent therapeutic antibody that can neutralize viral infection by interfering with virion-CAR interactions, destabilizing the capsid and inducing virion disruption. Together, these results define the structural basis of CVB cell entry and antibody neutralization
    corecore