293 research outputs found

    Factorization and Criticality in the Anisotropic XY Chain via Correlations

    Full text link
    In this review, we discuss the zero and finite temperature behavior of various bipartite quantum and total correlation measures, the skew information-based quantum coherence, and the local quantum uncertainty in the thermal ground state of the one-dimensional anisotropic XY model in transverse magnetic field. We compare the ability of considered measures to correctly detect or estimate the quantum critical point and the non-trivial factorization point possessed by the spin chain.Comment: 29 pages, 8 figures. A review paper accepted for publication in the special issue Entanglement Entropy in the journal Entrop

    Conservation law for distributed entanglement of formation and quantum discord

    Full text link
    We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF) and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF and the QD obey a conservation relation. By means of this relation we show that in the deterministic quantum computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.Comment: Published versio

    Robustness of quantum discord to sudden death

    Get PDF
    We calculate the dissipative dynamics of two-qubit quantum discord under Markovian environments. We analyze various dissipative channels such as dephasing, depolarizing, and generalized amplitude damping, assuming independent perturbation, in which each qubit is coupled to its own channel. Choosing initial conditions that manifest the so-called sudden death of entanglement, we compare the dynamics of entanglement with that of quantum discord. We show that in all cases where entanglement suddenly disappears, quantum discord vanishes only in the asymptotic limit, behaving similarly to individual decoherence of the qubits, even at finite temperatures. Hence, quantum discord is more robust than the entanglement against to decoherence so that quantum algorithms based only on quantum discord correlations may be more robust than those based on entanglement.Comment: 4 figures, 4 page

    Protecting the SWAP\sqrt{SWAP} operation from general and residual errors by continuous dynamical decoupling

    Full text link
    We study the occurrence of errors in a continuously decoupled two-qubit state during a SWAP\sqrt{SWAP} quantum operation under decoherence. We consider a realization of this quantum gate based on the Heisenberg exchange interaction, which alone suffices for achieving universal quantum computation. Furthermore, we introduce a continuous-dynamical-decoupling scheme that commutes with the Heisenberg Hamiltonian to protect it from the amplitude damping and dephasing errors caused by the system-environment interaction. We consider two error-protection settings. One protects the qubits from both amplitude damping and dephasing errors. The other features the amplitude damping as a residual error and protects the qubits from dephasing errors only. In both settings, we investigate the interaction of qubits with common and independent environments separately. We study how errors affect the entanglement and fidelity for different environmental spectral densities.Comment: Extended version of arXiv:1005.1666. To appear in PR
    • …
    corecore