1,775 research outputs found

    Performance of a prehospital trauma diversion system in Hong Kong, China

    Get PDF
    postprin

    Maximum power point tracking control of a linear magnetic-geared generator for direct-drive wave energy conversion

    Get PDF
    This paper deals with control of a linear magneticgeared permanent-magnet generator for wave power generation using maximum power point tracking (MPPT) algorithm. Firstly, the linear magnetic-geared permanent-magnet generator structure is presented. The machine modeling is established based on the finite element analysis (FEA). Secondly, by analyzing the dynamic model of the wave power, the MPPT algorithm for directdrive wave power generation is discussed. Then, the performance for maximizing wave power absorption is verified and evaluated by the circuit simulator. The results verify that the MPPT algorithm is valid for the direct-drive wave power generation.postprin

    An integrated PM magnetic-geared machine for hybrid electric vehicles

    Get PDF
    Paper no. DS1-58The free-piston generators have the advantages of simple structure, high power density and high efficiency, so they are proposed for applying in the series hybrid electric vehicles (HEV). In this paper, a novel PM linear magnetic-geared machine serving as the free-piston generator is proposed. The machine consists of a linear permanent magnet synchronous machine (PMSM) and a linear magnetic gear (LMG), which are integrated together. The proposed machine adopts a structure that the high-speed mover of the LMG and the translator of the linear PMSM share the same moving part. There are four main parts in the machine topology, including the low-speed mover with PMs, the ferromagnetic pole pieces, the high-speed mover with PMs and the stator with three-phase windings. In order to improve the speed of the PMSM translator, the magnetic-geared topology is adopted, such that the designed machine can generate the high-voltage electricity and have the high power density. In the magnetic-geared machine, the tubular stator is designed as a 12-slot structure with concentrated windings. In order to integrate the machine and the magnetic gear magnetically and mechanically together, the high-speed mover of the magnetic gear is designed as the translator of the machine. The tubular machine translator consists of one row of PMs. And the low-speed mover of the magnetic gear consists of a tubular iron core and PMs mounted on the inner face of the core. The PMs of both low-speed mover and machine translator are radial magnetized. Between the low-speed mover and the high-speed mover of the magnetic gear, the ferromagnetic pole pieces are fixed there to modulate the magnetic fields. Since the LMG has the advantage of high force density inherently, the proposed novel PM linear magnetic-geared machine can obtain the high power density, high efficiency and weight reduction by comparing with the conventional linear machines. This work is performed and verified by using the finite element analysis (FEA) method.published_or_final_versio

    Differential Proteomic Analysis of Human Saliva using Tandem Mass Tags Quantification for Gastric Cancer Detection.

    Get PDF
    Novel biomarkers and non-invasive diagnostic methods are urgently needed for the screening of gastric cancer to reduce its high mortality. We employed quantitative proteomics approach to develop discriminatory biomarker signatures from human saliva for the detection of gastric cancer. Salivary proteins were analyzed and compared between gastric cancer patients and matched control subjects by using tandem mass tags (TMT) technology. More than 500 proteins were identified with quantification, and 48 of them showed significant difference expression (p < 0.05) between normal controls and gastric cancer patients, including 7 up-regulated proteins and 41 down-regulated proteins. Five proteins were selected for initial verification by ELISA and three were successfully verified, namely cystatin B (CSTB), triosephosphate isomerase (TPI1), and deleted in malignant brain tumors 1 protein (DMBT1). All three proteins could differentiate gastric cancer patients from normal control subjects, dramatically (p < 0.05). The combination of these three biomarkers could reach 85% sensitivity and 80% specificity for the detection of gastric cancer with accuracy of 0.93. This study provides the proof of concept of salivary biomarkers for the non-invasive detection of gastric cancer. It is highly encouraging to turn these biomarkers into an applicable clinical test after large scale validation

    Template Synthesis of Three-Dimensional Cubic Ordered Mesoporous Carbon With Tunable Pore Sizes

    Get PDF
    Three-dimensional cubic ordered mesoporous carbons with tunable pore sizes have been synthesized by using cubic Ia3d mesoporous KIT-6 silica as the hard template and boric acid as the pore expanding agent. The prepared ordered mesoporous carbons were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption analysis. The results show that the pore sizes of the prepared ordered mesoporous carbons with three-dimensional cubic structure can be regulated in the range of 3.9–9.4 nm. A simplified model was proposed to analyze the tailored pore sizes of the prepared ordered mesoporous carbons on the basis of the structural parameters of the silica template

    The interface between silicon and a high-k oxide

    Full text link
    The ability to follow Moore's Law has been the basis of the tremendous success of the semiconductor industry in the past decades. To date, the greatest challenge for device scaling is the required replacement of silicon dioxide-based gate oxides by high-k oxides in transistors. Around 2010 high-k oxides are required to have an atomically defined interface with silicon without any interfacial SiO2 layer. The first clean interface between silicon and a high-K oxide has been demonstrated by McKee et al. Nevertheless, the interfacial structure is still under debate. Here we report on first-principles calculations of the formation of the interface between silicon and SrTiO3 and its atomic structure. Based on insights into how the chemical environment affects the interface, a way to engineer seemingly intangible electrical properties to meet technological requirements is outlined. The interface structure and its chemistry provide guidance for the selection process of other high-k gate oxides and for controlling their growth. Our study also shows that atomic control of the interfacial structure can dramatically improve the electronic properties of the interface. The interface presented here serves as a model for a variety of other interfaces between high-k oxides and silicon.Comment: 10 pages, 2 figures (one color

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells

    Get PDF
    Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons

    Increased Asymmetric Dimethylarginine in Severe Falciparum Malaria: Association with Impaired Nitric Oxide Bioavailability and Fatal Outcome

    Get PDF
    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is a predictor of mortality in critical illness. Severe malaria (SM) is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1) increased in proportion to disease severity, 2) associated with impaired vascular and pulmonary NO bioavailability and 3) independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM) and 19 healthy controls (HC). Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 µM; 95% CI 0.74–0.96) compared to those with MSM (0.54 µM; 95%CI 0.5–0.56) and HCs (0.64 µM; 95%CI 0.58–0.70; p<0.001). ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0–181; p = 0.01). ADMA was independently associated with decreased exhaled NO (rs = −0.31) and endothelial function (rs = −0.32) in all malaria patients, and with reduced exhaled NO (rs = −0.72) in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria
    • …
    corecore