1,632 research outputs found

    A Space-frequency Power Allocation Algorithm for MIMO OWC Systems over Low-Pass Channels

    Get PDF
    In the last two decades, an unprecedented spread of communication systems has been witnessed. While at the beginning these systems were only able to support a small number of devices with limited data services, they have now matured to high speed networks that are densely populated. Society is increasingly connected, with different types of applications running on, by now Billions of devices, and this trend drives the use of communication systems. The growth is so fast that the Radio Frequency (RF) spectrum is already overcrowded. In future, it is expected that many applications will require speeds far beyond a Gbit/s. In order to achieve this capacity and, at the same time, to off load the pressure on RF systems, higher spectral bands and optical frequencies are currently being explored.Exploring higher frequencies in the electromagnetic spectrum, optical wireless communication (OWC) systems have recently gained great interest [1,2]. Due its many advantages, such as low cost, high energy efficiency, and minimal heat generation, LEDs are commonly used for illumination and are strong candidates to drive data transmission in OWC systems [2-4]. However, the modulation bandwidth of this source is limited and there is still the need to increase data throughput [4,5]. An alternative is to deploy multiple LEDs in a Multiple Input Multiple Output (MIMO) scheme [2-6]. MIMO is a well-known technology which explores the additional spatial dimension in order to provide a degree-of-freedom gain. By transmitting multiple data-streams over the light channel in a Spatial Multiplexing (SM) scheme from multiple spatially separated locations, Distributed-MIMO technology offers higher data throughput without the need of additional power or bandwidth. An important additional advantage of MIMO in OWC systems is that communication still works even when one line-of-sight link is blocked. In further boosting the bits rate, the low-pass frequency response of the LEDs poses further limitations. The low-pass behaviour of this source was pointed out in [6-9], but its impact on the performance of LED-based MIMO OWC systems still not fully addressed. To compensate the low-pass effect, Orthogonal Frequency Division Multiplexing (OFDM) is often used. OFDM is a robust and effective technology commonly used in RF systems to suppress inter-symbol interference (ISI) and to convert a frequency-selective fading channel into multiple parallel flat-fading, i.e., non-dispersive channels. In an OFDM scheme the spectrum bandwidth is divided into a set of orthogonal subcarriers in order to support high data rates through parallel transmission. By using OFDM, power loading strategies can be used to appropriately distribute power over the subcarriers in order to reduce the performance degradation caused by the low-pass effect of the LEDs [8]. Different power loading strategies are proposed to allocate power resources in the frequency domain, mainly the uniform loading and the optimized waterfilling loading [6-8]. In this paper, we consider the transmission mode of an indoor LED-based MIMO OWC system with SM and OFDM. We present an analytical model for the channel and we derive expressions for the achievable rate of the system considering common low-pass channel frequency responses: Gaussian, exponential and first-order [6-9]. Based on an indoor LED-based MIMO OWC setup, we investigate through analytical and simulation results the system performance for different power loading strategies. Through simulation results, we point out that the resource allocation optimization only in the frequency domain may not be satisfactory and we propose a new algorithm that considers both spatial and frequency domains to load power over the MIMO channels and OFDM subcarriers. With the singular value decomposition (SVD) applied to the channel frequency response matrix, the proposed space-frequency power allocation algorithm allocates more power to subchannels with larger gains considering all subchannels available for transmission in space and frequency domains.<br/

    A Variable Metric Probabilistic k-Nearest-Neighbours Classifier

    Get PDF
    Copyright © 2004 Springer Verlag. The final publication is available at link.springer.com5th International Conference, Exeter, UK. August 25-27, 2004. ProceedingsBook title: Intelligent Data Engineering and Automated Learning – IDEAL 2004k-nearest neighbour (k-nn) model is a simple, popular classifier. Probabilistic k-nn is a more powerful variant in which the model is cast in a Bayesian framework using (reversible jump) Markov chain Monte Carlo methods to average out the uncertainy over the model parameters.The k-nn classifier depends crucially on the metric used to determine distances between data points. However, scalings between features, and indeed whether some subset of features is redundant, are seldom known a priori. Here we introduce a variable metric extension to the probabilistic k-nn classifier, which permits averaging over all rotations and scalings of the data. In addition, the method permits automatic rejection of irrelevant features. Examples are provided on synthetic data, illustrating how the method can deform feature space and select salient features, and also on real-world data

    The angiotensin II type I receptor contributes to impaired cerebral blood flow autoregulation caused by placental ischemia in pregnant rats

    Get PDF
    BACKGROUND: Placental ischemia and hypertension, characteristic features of preeclampsia, are associated with impaired cerebral blood flow (CBF) autoregulation and cerebral edema. However, the factors that contribute to these cerebral abnormalities are not clear. Several lines of evidence suggest that angiotensin II can impact cerebrovascular function; however, the role of the renin angiotensin system in cerebrovascular function during placental ischemia has not been examined. We tested whether the angiotensin type 1 (AT1) receptor contributes to impaired CBF autoregulation in pregnant rats with placental ischemia caused by surgically reducing uterine perfusion pressure. METHODS: Placental ischemic or sham operated rats were treated with vehicle or losartan from gestational day (GD) 14 to 19 in the drinking water. On GD 19, we assessed CBF autoregulation in anesthetized rats using laser Doppler flowmetry. RESULTS: Placental ischemic rats had impaired CBF autoregulation that was attenuated by treatment with losartan. In addition, we examined whether an agonistic autoantibody to the AT1 receptor (AT1-AA), reported to be present in preeclamptic women, contributes to impaired CBF autoregulation. Purified rat AT1-AA or vehicle was infused into pregnant rats from GD 12 to 19 via mini-osmotic pumps after which CBF autoregulation was assessed. AT1-AA infusion impaired CBF autoregulation but did not affect brain water content. CONCLUSIONS: These results suggest that the impaired CBF autoregulation associated with placental ischemia is due, at least in part, to activation of the AT1 receptor and that the RAS may interact with other placental factors to promote cerebrovascular changes common to preeclampsia

    Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes

    Get PDF
    We present a theorical investigation of the optical transmission of a dielectric grating carved in a tungsten layer. For appropriate wavelengths tungsten shows indeed a dielectric behaviour. Our numerical simulations leads to theoretical results similar to those found with metallic systems studied in earlier works. The interpretation of our results rests on the idea that the transmission is correlated with the resonant response of eigenmodes coupled to evanescent diffraction orders.Comment: 4 pages, 3 figure

    Control of ZnO nanowire arrays by nanosphere lithography (NSL) on laser-produced ZnO substrates

    Get PDF
    Nanosphere lithography (NSL) is a successful technique for fabricating highly ordered arrays of ZnO nanowires typically on sapphire and GaN substrates. In this work, we investigate the use of thin ZnO films deposited on Si by pulsed laser deposition (PLD) as the substrate. This has a number of advantages over the alternatives above, including cost and potential scalability of production and it removes any issue of inadvertent n-type doping of nanowires by diffusion from the substrate. We demonstrate ordered arrays of ZnO nanowires, on ZnO-coated substrates by PLD, using a conventional NSL technique with gold as the catalyst. The nanowires were produced by Vapor Phase Transport (VPT) growth in a tube furnace system and grew only on the areas pre-patterned by Au. We have also investigated the growth of ZnO nanowires using ZnO catalyst points deposited by PLD through an NSL mask on a bare silicon substrate

    Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2

    Get PDF
    The phase diagram of surface structures for the model catalyst RuO2(110) in contact with a gas environment of O2 and CO is calculated by density-functional theory and atomistic thermodynamics. Adsorption of the reactants is found to depend crucially on temperature and partial pressures in the gas phase. Assuming that a catalyst surface under steady-state operation conditions is close to a constrained thermodynamic equilibrium, we are able to rationalize a number of experimental findings on the CO oxidation over RuO2(110). We also calculated reaction pathways and energy barriers. Based on the various results the importance of phase coexistence conditions is emphasized as these will lead to an enhanced dynamics at the catalyst surface. Such conditions may actuate an additional, kinetically controlled reaction mechanism on RuO2(110).Comment: 12 pages including 8 figure files. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Block Spin Density Matrix of the Inhomogeneous AKLT Model

    Full text link
    We study the inhomogeneous generalization of a 1-dimensional AKLT spin chain model. Spins at each lattice site could be different. Under certain conditions, the ground state of this AKLT model is unique and is described by the Valence-Bond-Solid (VBS) state. We calculate the density matrix of a contiguous block of bulk spins in this ground state. The density matrix is independent of spins outside the block. It is diagonalized and shown to be a projector onto a subspace. We prove that for large block the density matrix behaves as the identity in the subspace. The von Neumann entropy coincides with Renyi entropy and is equal to the saturated value.Comment: 20 page
    corecore