330 research outputs found

    Memory-enhancing effect of Rhodiola rosea L extract on aged mice

    Get PDF
    Purpose: The memory-enhancing effects of Rhodiola rosea L. extract (RRLE) on normal aged mice were assessed.Methods: In the open-field test, the effect of RRLE (150 and 300 mg/kg) on mouse locomotive activities was evaluated by investigating the extract’s influence on CAT and AchE activities in the brain tissue of mice.Results: Compared with aged group, high dose of RRLE reduced the total distance (3212.4 Β± 123.1 cm, p < 0.05) significantly, increased catalase (CAT) activity (101.4 Β± 12.2 U/mg pro, p < 0.05), and inhibited acetyl cholinesterase (AChE) activity (0.94 Β± 0.12 U/mg pro, p < 0.05) in the brain tissue of aged mice.Conclusion: The results show that RRLE improves the memory functions of aged mice probably by increasing CAT activity while decreasing AChE activity.Keywords: Rhodiola rosea, Memory function, Catalase, Acetyl cholinesterase, Open-field tes

    Genetic associations between gut microbiota and type 2 diabetes mediated by plasma metabolites: a Mendelian randomization study

    Get PDF
    BackgroundNumerous research studies have indicated a possible association between type 2 diabetes (T2DM) and gut microbiota. To explore specific metabolic pathways connecting gut microbiota and T2DM, we employed Mendelian randomization (MR) and linkage disequilibrium score regression (LDSC) techniques.MethodsThis research utilized data from genome-wide association studies (GWAS) that are publicly accessible. We evaluated the genetic correlation between gut microbiota and T2DM using LDSC. Causality was primarily determined through the inverse variance weighted (IVW) method. To verify the robustness of our results, we conducted sensitivity analyses using several approaches, including the weighted median, MR-Egger, and MR-PRESSO. We integrated summary effect estimates from LDSC, along with forward and reverse MR, into a meta-analysis for T2DM using various data sources. Additionally, mediation analysis was performed to explore the impact of plasma metabolites on the relationship between gut microbiota and T2DM.ResultsOur study indicated a significant genetic correlation between genus RuminococcaceaeUCG005 (Rg = βˆ’0.26, Rg_P = 2.07Γ—10βˆ’4) and T2DM. Moreover, the forward MR analysis identified genus RuminococcaceaeUCG010 (OR = 0.857, 95% CI 0.795, 0.924; P = 6.33Γ—10βˆ’5) and order Clostridiales (OR = 0.936, 95% CI 0.878, 0.997; P = 0.039) as being significantly associated with a decreased risk of T2DM. The analysis also highlighted several plasma metabolites as significant mediators in these relationships, with metabolites like octadecadienedioate (C18:2-DC) and branched chain 14:0 dicarboxylic acid being notably involved.ConclusionThe findings demonstrate a significant impact of gut microbiota on T2DM via plasma metabolites, suggesting potential metabolic pathways for therapeutic targeting. This study enhances our understanding of the microbiota’s role in T2DM pathogenesis and supports the development of microbiota-based interventions

    Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis

    Get PDF
    SummaryDefective apoptosis renders immortalized epithelial cells highly tumorigenic, but how this is impacted by other common tumor mutations is not known. In apoptosis-defective cells, inhibition of autophagy by AKT activation or by allelic disruption of beclin1 confers sensitivity to metabolic stress by inhibiting an autophagy-dependent survival pathway. While autophagy acts to buffer metabolic stress, the combined impairment of apoptosis and autophagy promotes necrotic cell death in vitro and in vivo. Thus, inhibiting autophagy under conditions of nutrient limitation can restore cell death to apoptosis-refractory tumors, but this necrosis is associated with inflammation and accelerated tumor growth. Thus, autophagy may function in tumor suppression by mitigating metabolic stress and, in concert with apoptosis, by preventing death by necrosis

    Application and Prospect of Flexible Transmission and Distribution Technology in Internet Data Center

    Get PDF
    [Introduction] As an important thrust of China's "new infrastructure", internet data centers have ushered in opportunities for vigorous development and become new areas of energy use, putting forward higher requirements for the power supply level and capacity of the local distribution network. The innovative application of flexible transmission and distribution technology and key equipment makes the power supply and distribution system more intelligent, more flexible and more reliable, and more able to cope with the challenges brought by the large proportion of DC loads and concentrated high-load energy loads such as Internet data centers, and realize the construction and operation of Internet data centers more low-carbon, more efficient, more reliable and more economical. [Method] Firstly, the basic load requirements of Internet data center were discussed, the overall classification and performance requirements of internet data centers were analyzed. The application of flexible technology in distribution network was studied, with a focus on analyzing and comparing three types of technical routes: "rectification distribution, DC distribution, and AC-DC hybrid power supply and distribution". [Result] The paper provides provides tailored solutions for issues related to system reliability, stability, power quality, power efficiency and acceptance of new energy. [Conclusion] By summarizing the existing research results, flexible transmission and distribution technology is regarded as the core technology of building internet data center. Targeted data center control scheme should be studied from different aspects such as device and algorithms. After summarizing the research results of different aspects, the paper also looks forward to the practice and popularization of head-to-head transmission and distribution technology in internet data center

    Heavy ion irradiation simulation of high dose irradiation induced radiation effects in materials

    No full text
    Materials used for ADS, ITER, fast reactor, etc suffer very high dose irradiations of protons and/or neutrons. The yearly accumulated irradiation doses could reach a couple of hundred dpa in ADS, ~40 dpa in fast reactors and ~30 dpa in ITER’s DEMO, producing severe radiation damage in materials and leading to a breakdown or accident of these installations. Investigation of such high dose irradiation induced radiation damage is a currently interesting topic with great importance. It is deeply hampered for lack of high dose neutron and proton sources. The heavy ion irradiation simulation technique has been developed at HI-13 tandem accelerator to investigate radiation damage encountered in the above mentioned installations. An experiment was carried out to verify the reliability and validity of heavy ion irradiation simulation. A series of experiments were performed by heavy ion irradiation simulation in combination with positron annihilation lifetime spectroscopy to investigate the temperature and dose dependence of radiation damage in stainless steels, tungsten, tantalum, etc. Some experimental results will be presented and discussed.ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ, Ρ‰ΠΎ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ Π² ADS, ITER, ΡˆΠ²ΠΈΠ΄ΠΊΠΎΠΌΡƒ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Ρ–, ΠΏΡ–Π΄Π΄Π°Π½Ρ– високим Π΄ΠΎΠ·Π°ΠΌ опромінСння ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π°ΠΌΠΈ Ρ‚Π°/Π°Π±ΠΎ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π°ΠΌΠΈ. Π¦Π΅ опромінСння Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ” сСрйознС Ρ€Π°Π΄Ρ–Π°Ρ†Ρ–ΠΉΠ½Π΅ пошкодТСння ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π², Ρ‰ΠΎ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ руйнування Ρ†ΠΈΡ… ΡƒΡΡ‚Π°Ρ‚ΠΊΡƒΠ²Π°Π½ΡŒ Π°Π±ΠΎ Ρ—Ρ… Π°Π²Π°Ρ€Ρ–Ρ—. ДослідТСння Ρ€Π°Π΄Ρ–Π°Ρ†Ρ–ΠΉΠ½ΠΈΡ… пошкодТСнь, Π·ΡƒΠΌΠΎΠ²Π»Π΅Π½ΠΈΡ… опромінСнням Π²Π΅Π»ΠΈΠΊΠΈΠΌΠΈ Π΄ΠΎΠ·Π°ΠΌΠΈ, Ρ” Π΄ΠΎΡΠΈΡ‚ΡŒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΈΠΌ Ρ‚Π° Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌ завданням. Однак Ρ†Π΅ дослідТСння Π³Π°Π»ΡŒΠΌΡƒΡ”Ρ‚ΡŒΡΡ внаслідок відсутності Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… Ρ‚Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π½ΠΈΡ… Π΄ΠΆΠ΅Ρ€Π΅Π», Ρ‰ΠΎ ΠΌΠ°ΡŽΡ‚ΡŒ високі Ρ‰Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– ΠΏΠΎΡ‚ΠΎΠΊΡ–Π² часток. МодСлювання Π· використанням опромінСння Π²Π°ΠΆΠΊΠΈΠΌΠΈ Ρ–ΠΎΠ½Π°ΠΌΠΈ прСдставляє Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ ΡˆΠ»ΡΡ… Ρ‚Π°ΠΊΠΎΠ³ΠΎ дослідТСння. ΠœΠ΅Ρ‚ΠΎΠ΄ модСлювання Π· використанням опромінСння Π²Π°ΠΆΠΊΠΈΠΌΠΈ Ρ–ΠΎΠ½Π°ΠΌΠΈ Π½Π° основі Ρ‚Π°Π½Π΄Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΠ²Π°Ρ‡Π° НІ-13 застосовувався Π² Інституті Π°Ρ‚ΠΎΠΌΠ½ΠΎΡ— Π΅Π½Π΅Ρ€Π³Ρ–Ρ— ΠšΠΈΡ‚Π°ΡŽ для дослідТСння Ρ€Π°Π΄Ρ–Π°Ρ†Ρ–ΠΉΠ½ΠΈΡ… пошкодТСнь, Ρ‰ΠΎ ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°ΡŽΡ‚ΡŒΡΡ Ρƒ Π²ΠΈΡ‰Π΅Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ… устаткуваннях. ΠŸΠ΅Ρ€Π΅Π²Ρ–Ρ€Π΅Π½Π° Π½Π°Π΄Ρ–ΠΉΠ½Ρ–ΡΡ‚ΡŒ Ρ‚Π° Π΄ΠΎΡΡ‚ΠΎΠ²Ρ–Ρ€Π½Ρ–ΡΡ‚ΡŒ модСлювання Π·Π° допомогою опромінСння Π²Π°ΠΆΠΊΠΈΠΌΠΈ Ρ–ΠΎΠ½Π°ΠΌΠΈ; Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΎ Π½ΠΈΠ·ΠΊΡƒ СкспСримСнтів ΡˆΠ»ΡΡ…ΠΎΠΌ модСлювання Π²Π°ΠΆΠΊΠΈΠΌΠΈ Ρ–ΠΎΠ½Π°ΠΌΠΈ Ρƒ ΠΏΠΎΡ”Π΄Π½Π°Π½Π½Ρ– Π·Ρ– ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΡ–Ρ”ΡŽ часу Тиття ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Ρ–Π² для вивчСння залСТності Ρ€Π°Π΄Ρ–Π°Ρ†Ρ–ΠΉΠ½ΠΈΡ… пошкодТСнь Π²Ρ–Π΄ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Ρ– Π΄ΠΎΠ·ΠΈ для Π½Π΅Ρ€ΠΆΠ°Π²Ρ–ΡŽΡ‡ΠΈΡ… сталСй, Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΡƒ, Ρ‚Π°Π½Ρ‚Π°Π»Ρƒ Ρ– Ρ‚.Π΄. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ– Ρ– ΠΎΠ±Π³ΠΎΠ²ΠΎΡ€ΡŽΡŽΡ‚ΡŒΡΡ дСякі Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² ADS, ITER, быстром Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π΅, ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Ρ‹ ΠΎΡ‡Π΅Π½ΡŒ высоким Π΄ΠΎΠ·Π°ΠΌ облучСния ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π°ΠΌΠΈ ΠΈ/ΠΈΠ»ΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π°ΠΌΠΈ. Π­Ρ‚ΠΎ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½ΠΎΠ΅ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ этих установок ΠΈΠ»ΠΈ ΠΈΡ… Π°Π²Π°Ρ€ΠΈΠΈ. ИсслСдованиС Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ большими Π΄ΠΎΠ·Π°ΠΌΠΈ, являСтся вСсьма Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈ Π²Π°ΠΆΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ. Однако это исслСдованиС тормозится ΠΈΠ·-Π·Π° отсутствия Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… источников, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… высокиС плотности ΠΏΠΎΡ‚ΠΎΠΊΠ° частиц. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ с использованиСм облучСния тяТСлыми ΠΈΠΎΠ½Π°ΠΌΠΈ прСдоставляСт эффСктивный ΠΏΡƒΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠ³ΠΎ исслСдования. ΠœΠ΅Ρ‚ΠΎΠ΄ модСлирования с использованиСм облучСния тяТСлыми ΠΈΠΎΠ½Π°ΠΌΠΈ Π½Π° основС Ρ‚Π°Π½Π΄Π΅ΠΌΠ½ΠΎΠ³ΠΎ ускоритСля НI-13 примСнялся Π² Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π΅ Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ энСргии ΠšΠΈΡ‚Π°Ρ для исслСдования Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ, Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π² Π²Ρ‹ΡˆΠ΅ΡƒΠΏΠΎΠΌΡΠ½ΡƒΡ‚Ρ‹Ρ… установках. ΠŸΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Π° Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈ Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒ модСлирования с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ облучСния тяТСлыми ΠΈΠΎΠ½Π°ΠΌΠΈ; Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ ряд экспСримСнтов ΠΏΡƒΡ‚Π΅ΠΌ модСлирования облучСния тяТСлыми ΠΈΠΎΠ½Π°ΠΌΠΈ Π² сочСтании со спСктроскопиСй Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΆΠΈΠ·Π½ΠΈ ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½ΠΎΠ² для изучСния зависимости Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ Π΄ΠΎΠ·Ρ‹ для Π½Π΅Ρ€ΠΆΠ°Π²Π΅ΡŽΡ‰ΠΈΡ… сталСй, Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠ°, Ρ‚Π°Π½Ρ‚Π°Π»Π° ΠΈ Ρ‚.Π΄. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹
    • …
    corecore