18 research outputs found

    A Resonant Graphene NEMS Vibrometer

    Get PDF
    Measuring vibrations is essential to ensuring building structural safety and machine stability. Predictive maintenance is a central internet of things (IoT) application within the new industrial revolution, where sustainability and performance increase over time are going to be paramount. To reduce the footprint and cost of vibration sensors while improving their performance, new sensor concepts are needed. Here, double-layer graphene membranes are utilized with a suspended silicon proof demonstrating their operation as resonant vibration sensors that show outstanding performance for a given footprint and proof mass. The unveiled sensing effect is based on resonant transduction and has important implications for experimental studies involving thin nano and micro mechanical resonators that are excited by an external shaker

    Nanoelectromechanical Sensors based on Suspended 2D Materials

    Full text link
    The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing.Comment: Review pape

    Integration of graphene into MEMS and NEMS for sensing applications

    No full text
    This thesis presents a novel approach to integrate chemical vapor deposition (CVD) graphene into silicon micro- and nanoelectromechanical systems (MEMS/NEMS) to fabricate different graphene based MEMS/NEMS structures and explore mechanical properties of graphene as well as their applications such as acceleration sensing, humidity sensing and CO2 sensing. The thesis also presents a novel method of characterization of CVD graphene grain boundary based defects.     The first section of this thesis presents a robust, scalable, flexible route to integrate double-layer graphene membranes to a silicon substrate so that large silicon masses are suspended by graphene membranes.     In the second section, doubly-clamped suspended graphene beams with attached silicon masses are fabricated and used as model systems for studying the mechanical properties of graphene and transducer elements for NEMS resonators and extremely small accelerometers, occupying die areas that are at least two orders of magnitude smaller than the die areas occupied by the most compact state-of-the-art silicon accelerometers. An averaged Young’s modulus of double-layer graphene of ~0.22 TPa and non-negligible built-in stresses of the order of 200-400 MPa in the suspended graphene beams are extracted, using analytical and FEA models. In addition, fully clamped suspended graphene membranes with attached proof masses are also realized, which are used for acceleration sensing. In the third section, CO2 sensing of single-layer graphene and the cross-sensitivity between CO2 and humidity are shown. The cross-sensitivity of CO2 is negligible at typical CO2 concentrations present in air. The properties of double-layer graphene when exposed to humidity and CO2 have been characterized, with similarly fast response and recovery behaviour but weak resistance responses, compared to single layer graphene. In the fourth section, a fast and simple method for large-area visualization of grain boundaries in CVD graphene transferred to a SiO2 surface is demonstrated. The method only requires vapor hydrofluoric acid (VHF)-etching and optical microscope inspection and therefore could be useful to speed up the process of developing large-scale high quality graphene synthesis, and can also be used for analysis of the influence of grain boundaries on the properties of emerging graphene devices that utilize CVD graphene patches placed on a SiO2 substrate.QC 20180726</p

    Integration of graphene into MEMS and NEMS for sensing applications

    No full text
    This thesis presents a novel approach to integrate chemical vapor deposition (CVD) graphene into silicon micro- and nanoelectromechanical systems (MEMS/NEMS) to fabricate different graphene based MEMS/NEMS structures and explore mechanical properties of graphene as well as their applications such as acceleration sensing, humidity sensing and CO2 sensing. The thesis also presents a novel method of characterization of CVD graphene grain boundary based defects.     The first section of this thesis presents a robust, scalable, flexible route to integrate double-layer graphene membranes to a silicon substrate so that large silicon masses are suspended by graphene membranes.     In the second section, doubly-clamped suspended graphene beams with attached silicon masses are fabricated and used as model systems for studying the mechanical properties of graphene and transducer elements for NEMS resonators and extremely small accelerometers, occupying die areas that are at least two orders of magnitude smaller than the die areas occupied by the most compact state-of-the-art silicon accelerometers. An averaged Young’s modulus of double-layer graphene of ~0.22 TPa and non-negligible built-in stresses of the order of 200-400 MPa in the suspended graphene beams are extracted, using analytical and FEA models. In addition, fully clamped suspended graphene membranes with attached proof masses are also realized, which are used for acceleration sensing. In the third section, CO2 sensing of single-layer graphene and the cross-sensitivity between CO2 and humidity are shown. The cross-sensitivity of CO2 is negligible at typical CO2 concentrations present in air. The properties of double-layer graphene when exposed to humidity and CO2 have been characterized, with similarly fast response and recovery behaviour but weak resistance responses, compared to single layer graphene. In the fourth section, a fast and simple method for large-area visualization of grain boundaries in CVD graphene transferred to a SiO2 surface is demonstrated. The method only requires vapor hydrofluoric acid (VHF)-etching and optical microscope inspection and therefore could be useful to speed up the process of developing large-scale high quality graphene synthesis, and can also be used for analysis of the influence of grain boundaries on the properties of emerging graphene devices that utilize CVD graphene patches placed on a SiO2 substrate.QC 20180726</p

    Integration of graphene into MEMS and NEMS for sensing applications

    No full text
    This thesis presents a novel approach to integrate chemical vapor deposition (CVD) graphene into silicon micro- and nanoelectromechanical systems (MEMS/NEMS) to fabricate different graphene based MEMS/NEMS structures and explore mechanical properties of graphene as well as their applications such as acceleration sensing, humidity sensing and CO2 sensing. The thesis also presents a novel method of characterization of CVD graphene grain boundary based defects.     The first section of this thesis presents a robust, scalable, flexible route to integrate double-layer graphene membranes to a silicon substrate so that large silicon masses are suspended by graphene membranes.     In the second section, doubly-clamped suspended graphene beams with attached silicon masses are fabricated and used as model systems for studying the mechanical properties of graphene and transducer elements for NEMS resonators and extremely small accelerometers, occupying die areas that are at least two orders of magnitude smaller than the die areas occupied by the most compact state-of-the-art silicon accelerometers. An averaged Young’s modulus of double-layer graphene of ~0.22 TPa and non-negligible built-in stresses of the order of 200-400 MPa in the suspended graphene beams are extracted, using analytical and FEA models. In addition, fully clamped suspended graphene membranes with attached proof masses are also realized, which are used for acceleration sensing. In the third section, CO2 sensing of single-layer graphene and the cross-sensitivity between CO2 and humidity are shown. The cross-sensitivity of CO2 is negligible at typical CO2 concentrations present in air. The properties of double-layer graphene when exposed to humidity and CO2 have been characterized, with similarly fast response and recovery behaviour but weak resistance responses, compared to single layer graphene. In the fourth section, a fast and simple method for large-area visualization of grain boundaries in CVD graphene transferred to a SiO2 surface is demonstrated. The method only requires vapor hydrofluoric acid (VHF)-etching and optical microscope inspection and therefore could be useful to speed up the process of developing large-scale high quality graphene synthesis, and can also be used for analysis of the influence of grain boundaries on the properties of emerging graphene devices that utilize CVD graphene patches placed on a SiO2 substrate.QC 20180726</p

    Rapid and Large-Area Visualization of Grain Boundaries in MoS2 on SiO2 Using Vapor Hydrofluoric Acid

    No full text
    Grain boundaries in two-dimensional (2D) material layers have an impact on their electrical, optoelectronic, and mechanical properties. Therefore, the availability of simple large-area characterization approaches that can directly visualize grains and grain boundaries in 2D materials such as molybdenum disulfide (MoS2) is critical. Previous approaches for visualizing grains and grain boundaries in MoS2 are typically based on atomic resolution microscopy or optical imaging techniques (i.e., Raman spectroscopy or photoluminescence), which are complex or limited to the characterization of small, micrometer-sized areas. Here, we show a simple approach for an efficient large-area visualization of the grain boundaries in continuous chemical vapor-deposited films and domains of MoS2 that are grown on a silicon dioxide (SiO2) substrate. In our approach, the MoS2 layer on a SiO2/Si substrate is exposed to vapor hydrofluoric acid (VHF), resulting in the differential etching of SiO2 at the MoS2 grain boundaries and SiO2 underneath the MoS2 grains as a result of VHF diffusing through the defects in the MoS2 layer at the grain boundaries. The location of the grain boundaries can be seen by the resulting SiO2 pattern using optical microscopy, scanning electron microscopy, or Raman spectroscopy. This method allows for a simple and rapid evaluation of grain sizes in 2D material films over large areas, thereby potentially facilitating the optimization of synthesis processes and advancing applications of 2D materials in science and technology.QC 20201022</p

    Toward Effective Passivation of Graphene to Humidity Sensing Effects

    No full text
    Graphene has a number of remarkable properties which make it well suited for both transistor devices as well as for sensor devices such as humidity sensors. Previously, the humidity sensing properties of monolayer graphene on SiO2 substrates were examined - showing rapid response and recovery over a large humidity range. Further, the devices were fabricated in a CMOS compatible process which can be incorporated back end of the line (BEOL). We now present a way to selectively passivate graphene to suppress this humidity sensing effect. In this work, we experimentally and theoretically demonstrate effective passivation of graphene to humidity sensing - allowing for future integration with other passivated graphene devices on the same chip.QC 20161209</p

    Suspended Graphene Membranes with Attached Silicon Proof Masses as Piezoresistive Nanoelectromechanical Systems Accelerometers

    No full text
    Graphene is an atomically thin material that features unique electrical and mechanical properties, which makes it an extremely promising material for future nanoelectromechanical systems (NEMS). Recently, basic NEMS accelerometer functionality has been demonstrated by utilizing piezoresistive graphene ribbons with suspended silicon proof masses. However, the proposed graphene ribbons have limitations regarding mechanical robustness, manufacturing yield and the maximum measurement current that can be applied across the ribbons. Here, we report on suspended graphene membranes that are fully-clamped at their circumference and that have attached silicon proof masses. We demonstrate their utility as piezoresistive NEMS accelerometers and they are found to be more robust, have longer life span and higher manufacturing yield, can withstand higher measurement currents and are able to suspend larger silicon proof masses, as compared to the previously graphene ribbon devices. These findings are an important step towards bringing ultra-miniaturized piezoresistive graphene NEMS closer towards deployment in emerging applications such as in wearable electronics, biomedical implants and internet of things (IoT) devices.Comment: 40 pages, 5 figures. arXiv admin note: text overlap with arXiv:2003.0711

    Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure

    No full text
    The shape and density of grain boundary defects in graphene strongly influence its electrical, mechanical, and chemical properties. However, it is difficult and elaborate to gain information about the large-area distribution of grain boundary defects in graphene. An approach is presented that allows fast visualization of the large-area distribution of grain boundary–based line defects in chemical vapor deposition graphene after transferring graphene from the original copper substrate to a silicon dioxide surface. The approach is based on exposing graphene to vapor hydrofluoric acid (VHF), causing partial etching of the silicon dioxide underneath the graphene as VHF diffuses through graphene defects. The defects can then be identified using optical microscopy, scanning electron microscopy, or Raman spectroscopy. The methodology enables simple evaluation of the grain sizes in polycrystalline graphene and can therefore be a valuable procedure for optimizing graphene synthesis processes.QC 20180604European Research Council through the Starting Grants M&M’s (277879)Swedish Research Council (GEMS, 2015-05112)European Research Council through the Starting Grants InteGraDe (307311)China Scholarship CouncilGerman Federal Ministry for Education and Research (NanoGraM, BMBF, 03XP0006C)German Research Foundation (DFG; LE 2440/1-2)German Research Council (DFG) through the Priority Program SPP 1459 Graphen
    corecore