24,497 research outputs found

    Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation

    Full text link
    In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother wavelets family. In this work we present the inversion formula and Parsval theorem for CCWT by virtue of the entangled state representation, which makes the CCWT theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.Comment: 4 pages no figur

    Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.

    Get PDF
    In metabolism, available free energy is limited and must be divided across pathway steps to maintain a negative ΔG throughout. For each reaction, ΔG is log proportional both to a concentration ratio (reaction quotient to equilibrium constant) and to a flux ratio (backward to forward flux). Here we use isotope labeling to measure absolute metabolite concentrations and fluxes in Escherichia coli, yeast and a mammalian cell line. We then integrate this information to obtain a unified set of concentrations and ΔG for each organism. In glycolysis, we find that free energy is partitioned so as to mitigate unproductive backward fluxes associated with ΔG near zero. Across metabolism, we observe that absolute metabolite concentrations and ΔG are substantially conserved and that most substrate (but not inhibitor) concentrations exceed the associated enzyme binding site dissociation constant (Km or Ki). The observed conservation of metabolite concentrations is consistent with an evolutionary drive to utilize enzymes efficiently given thermodynamic and osmotic constraints

    Integrable Minisuperspace Models with Liouville Field: Energy Density Self-Adjointness and Semiclassical Wave Packets

    Get PDF
    The homogeneous cosmological models with a Liouville scalar field are investigated in classical and quantum context of Wheeler-DeWitt geometrodynamics. In the quantum case of quintessence field with potential unbounded from below and phantom field, the energy density operators are not essentially self-adjoint and self-adjoint extensions contain ambiguities. Therefore the same classical actions correspond to a family of distinct quantum models. For the phantom field the energy spectrum happens to be discrete. The probability conservation and appropriate classical limit can be achieved with a certain restriction of the functional class. The appropriately localized wave packets are studied numerically using the Schrodinger's norm and a conserved Mostafazadeh's norm introduced from techniques of pseudo-Hermitian quantum mechanics. These norms give a similar packet evolution that is confronted with analytical classical solutions.Comment: Main points emphasized, less important material shortened; 24 pages, 13 figure

    Unusual emission of iron nuclei from the sun

    Get PDF
    Sustained emission of low energy solar particles with a composition richer in iron than oxygen is observed in the time period 1974 May 7 to 17. Between 0.7 and 4 MeV/nucleon the relative abundances of C:O:Fe are 0.24:1:1.35. It was suggested that these observations provide indication for effects of heavy ion enrichment in the lower corona of the sun

    Differential energy spectra of low energy (less than 8.5 MeV per nucleon) heavy cosmic rays during solar quiet times

    Get PDF
    Explorer 47 satellite observations of carbon, oxygen, and heavier nuclei differential energy spectra below 8.5 MeV/nucleon are presented for solar quiet time periods. A dE/dx vs E method for particle identification and energy determination was used. The instrumentation telescope included an isobutane proportional counter, a surface barrier Si detector, and a cylindrical plastic scintillator anticoincidence shield. The observations were performed outside the bow-shock and in the ecliptic plane. Results show an anisotropy of about 25% at 22 degrees west of the sun with a C/O ratio of 0.5 supporting a solar origin. The low energy portions of the C and O spectra have steep negative slopes, and the corresponding power law is given. Peculiarities in the O spectrum are discussed

    Strongly Correlated Two-Photon Transport in One-Dimensional Waveguide Coupled to A Two-Level System

    Full text link
    We show that two-photon transport is strongly correlated in one-dimensional waveguide coupled to a two-level system. The exact S-matrix is constructed using a generalized Bethe-Ansatz technique. We show that the scattering eigenstates of this system include a two-photon bound state that passes through the two-level system as a composite single particle. Also, the two-level system can induce effective attractive or repulsive interactions in space for photons. This general procedure can be applied to the Anderson model as well.Comment: 12 pages. 3 figures. Accepted by Physical Review Letter

    Spatiotemporal studies of black spruce forest soils and implications for the fate of C

    Get PDF
    Post-fire storage of carbon (C) in organic-soil horizons was measured in one Canadian and three Alaskan chronosequences in black spruce forests, together spanning stand ages of nearly 200 yrs. We used a simple mass balance model to derive estimates of inputs, losses, and accumulation rates of C on timescales of years to centuries. The model performed well for the surface and total organic soil layers and presented questions for resolving the dynamics of deeper organic soils. C accumulation in all study areas is on the order of 20–40 gC/m2/yr for stand ages up to ∼200 yrs. Much larger fluxes, both positive and negative, are detected using incremental changes in soil C stocks and by other studies using eddy covariance methods for CO2. This difference suggests that over the course of stand replacement, about 80% of all net primary production (NPP) is returned to the atmosphere within a fire cycle, while about 20% of NPP enters the organic soil layers and becomes available for stabilization or loss via decomposition, leaching, or combustion. Shifts toward more frequent and more severe burning and degradation of deep organic horizons would likely result in an acceleration of the carbon cycle, with greater CO2 emissions from these systems overall
    • …
    corecore