755 research outputs found

    An optimal full frequency control strategy for the modular multilevel matrix converter based on predictive control

    Get PDF
    The modular multilevel matrix converter (M3C) is a promising topology for high-voltage high-power applications. Recent researches have proved its significant advantages for adjustable-speed motor drives compared with the back-to-back modular multilevel converter (MMC). However, the branch energy balancing in the M3C presents great challenge especially at critical-frequency points where the output frequency is close to zero or grid-side frequency. Generally, this balancing control depends on the appropriate injection of inner circulating currents and the common-mode voltage (CMV) whereas their values are hard to determine and optimize. In this paper, an optimization based predictive control method is proposed to calculate the required circulating currents and the CMV. The proposed method features a broad-frequency range balancing of capacitor-voltages and no reactive power in the grid side. For operation at critical-frequency points, there is no increase on branch voltage stresses and limited increase on branch current stresses. A downscaled M3C system with 27 cells is designed and experiment results with the R-L load and induction motor load are presented to verify the proposed control method

    A branch current reallocation based energy balancing strategy for the modular multilevel matrix converter operating around equal frequency

    Get PDF
    The Modular multilevel matrix converter (M3C) is a promising topology for medium-voltage, high-power applications. Due to the modular structure, it is scalable, produces high quality output waveforms and can be fault tolerant. However, the M3C suffers from capacitor-voltage fluctuation if the output frequency is similar to the input frequency. This problem could limit the circuit’s application in the adjustable speed drives (ASD). This paper introduces a theoretical analysis in the phasor-domain to find the branch energy equilibrium point of the M3C when operating with equal input and output frequencies. On the basis of this equilibrium point, a branch current reallocation based energy balancing control method is proposed to equalize the energy stored in the nine converter branches. With this novel control method, the M3C can effectively overcome the capacitor voltage fluctuation without using balancing techniques based on common mode voltage or applying reactive power at the input side

    Activities and Role of School-Based Counselors in the US: A National Survey of American Counseling Association Members

    Get PDF
    This study was conducted to determine: how a US sample of American Counseling Association (ACA) affiliated school-based counselors viewed their role; the extent to which various activities were practiced; and, how demographic variables (e.g., work setting and professional identity) were related to both perceptions of role and practice. Participants (N = 249) completed the International Survey of School Counselors Activities-US (ISSA-US) online, which measured both perceptions of the appropriateness of 42 activities and whether these activities are reported to be enacted. US counselors had a broad definition of their role and showed a high degree of consensus regarding the appropriateness of activities. Grade level proved to be an important determinate of the level of enactment of both group counseling and college and career counseling. The implications for of these findings for redefining the role of school counselors in the US and for international comparative research are discussed

    Stress hyperglycemia is associated with poor outcome in critically ill patients with pulmonary hypertension

    Get PDF
    Background and objectiveStress hyperglycemia is common in critically ill patients and is associated with poor prognosis. Whether this association exists in pulmonary hypertension (PH) patients is unknown. The present cohort study investigated the association of stress hyperglycemia with 90-day all-cause mortality in intensive care unit (ICU) patients with PH.MethodsData of the study population were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. A new index, the ratio of admission glucose to HbA1c (GAR), was used to evaluate stress hyperglycemia. The study population was divided into groups according to GAR quartiles (Q1-Q4). The outcome of interest was all-cause mortality within 90 days, which was considered a short-term prognosis.ResultA total of 53,569 patients were screened. Ultimately, 414 PH patients were enrolled; 44.2% were male, and 23.2% were admitted to the cardiac ICU. As the GAR increased from Q2 to Q4, the groups had lower creatinine levels, longer ICU stays, and a higher proportion of renal disease. After adjusting for confounding factors such as demographics, vital signs, and comorbidities, an elevated GAR was associated with an increased risk of 90-day mortality.ConclusionStress hyperglycemia assessed by the GAR was associated with increased 90-day mortality in ICU patients with PH

    Secure Multiple Amplify-and-Forward Relaying Over Correlated Fading Channels

    Get PDF
    This paper quantifies the impact of correlated fading on secure communication of multiple amplify-and-forward (AF) relaying networks. In such a network, the base station (BS) is equipped with multiple antennas and communicates with the destination through multiple AF relays, while the message from the relays can be overheard by an eavesdropper. We focus on the practical communication scenario, where the main and eavesdropper’s channels are correlated. In order to enhance the transmission security, transmit antenna selection (TAS) is performed at the BS, and the best relay is chosen according to the full or partial relay selection criterion, which relies on the dualhop relay channels or the second-hop relay channels, respectively. For these criteria, we study the impact of correlated fading on the network secrecy performance, by deriving an analytical approximation for the secrecy outage probability (SOP) and an asymptotic expression for the high main-to-eavesdropper ratio (MER). From these results, it is concluded that the channel correlation is always beneficial to the secrecy performance of full relay selection. However, it deteriorates the secrecy performance if partial relay selection is used, when the number of antennas at the BS is less than the number of relays.ARC Discovery Projects Grant DP150103905

    Low compressible noble metal carbides with rock-salt structure: ab initio total energy calculations of the elastic stability

    Full text link
    We have systematically studied the mechanical stability of all noble metal carbides with the rock-salt structure by calculating their elastic constants within the density function theory scheme. It was found that only four carbides (RuC, PdC, AgC and PtC) are mechanically stable. In particular, we have shown that RuC, PdC, and PtC have very high bulk modulus, which has been remarkably observed by the most recent experiment for the case of PtC. From the calculated density of states, we can conclude that these compounds are metallic, like the conventional group IV and group V transition metal carbides.Comment: Appl. Phys. Lett. 89, 071913 (2006

    Surface Critical Phenomena in Interaction-Round-a-Face Models

    Full text link
    A general scheme has been proposed to study the critical behaviour of integrable interaction-round-a-face models with fixed boundary conditions. It has been shown that the boundary crossing symmetry plays an important role in determining the surface free energy. The surface specific heat exponent can thus be obtained without explicitly solving the reflection equations for the boundary face weights. For the restricted SOS LL-state models of Andrews, Baxter and Forrester the surface specific heat exponent is found to be αs=2−(L+1)/4\alpha_s=2-(L+1)/4.Comment: 11 pages; Latex fil

    FedTracker: Furnishing Ownership Verification and Traceability for Federated Learning Model

    Full text link
    Federated learning (FL) is a distributed machine learning paradigm allowing multiple clients to collaboratively train a global model without sharing their local data. However, FL entails exposing the model to various participants. This poses a risk of unauthorized model distribution or resale by the malicious client, compromising the intellectual property rights of the FL group. To deter such misbehavior, it is essential to establish a mechanism for verifying the ownership of the model and as well tracing its origin to the leaker among the FL participants. In this paper, we present FedTracker, the first FL model protection framework that provides both ownership verification and traceability. FedTracker adopts a bi-level protection scheme consisting of global watermark mechanism and local fingerprint mechanism. The former authenticates the ownership of the global model, while the latter identifies which client the model is derived from. FedTracker leverages Continual Learning (CL) principles to embedding the watermark in a way that preserves the utility of the FL model on both primitive task and watermark task. FedTracker also devises a novel metric to better discriminate different fingerprints. Experimental results show FedTracker is effective in ownership verification, traceability, and maintains good fidelity and robustness against various watermark removal attacks
    • …
    corecore