83 research outputs found

    Yes-Associated Protein Expression in Head and Neck Squamous Cell Carcinoma Nodal Metastasis

    Get PDF
    INTRODUCTION:Yes-associated protein (YAP) is considered an oncogene found amplified in multiple tumors, including head and neck squamous cell carcinoma (HNSCC). However, the role for YAP expression in HNSCC is not understood. Based on the central role of YAP in the hippo pathway, we tested if YAP was associated with the stage of HNSCC progression and metastatic potential. METHODS:To determine the expression of YAP in human benign and HNSCC tissue specimens, immunohistochemical analyses were performed in whole tissue samples and tissue microarrays. The expression of YAP in tissues of microarray was first associated with clinic-pathologic factors and results verified in samples from whole tissue sections. To investigate the role of YAP and p63 in regulating HNSCC epithelial to mesenchymal transition, epithelial and mesenchymal markers were assayed in Fadu and SCC-25 cells, HNSCC cells with endogenously elevated YAP expression and siRNA-mediated expression knockdown. RESULTS:Analysis of human HNSCC tissues suggested YAP expression was elevated in tumors compared to benign tissues and specifically localized at the tumor invasive front (p value < 0.05). But, indexed YAP expression was lower with greater tumor grade (p value  =  0.02). In contrast, p63 expression was primarily elevated in high-grade tumors. Interestingly, both YAP and p63 was strongly expressed at the tumor invasive front and in metastatic HNSCC. Strikingly, we demonstrated YAP expression in the primary HNSCC tumor was associated with nodal metastasis in univariate analysis (p value  =  0.02). However, the knockdown of YAP in Fadu and SCC-25 cell lines was not associated with changes in epithelial to mesenchymal transdifferentiation or p63 expression. CONCLUSION:Together, YAP expression, in combination with p63 can facilitate identification of HNSCC tumors from hyperplastic and benign tissues and the metastatic function of YAP in HNSCC may not be a result of epithelia to mesenchymal transdifferentiation

    Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging

    Get PDF
    Deposition of amyloid plaques in the brain is one of the two main pathological hallmarks of Alzheimer's disease (AD). Amyloid positron emission tomography (PET) is a neuroimaging tool that selectively detects in vivo amyloid deposition in the brain and is a reliable endophenotype for AD that complements cerebrospinal fluid biomarkers with regional information. We measured in vivo amyloid deposition in the brains of ~1000 subjects from three collaborative AD centers and ADNI using 11C-labeled Pittsburgh Compound-B (PiB)-PET imaging followed by meta-analysis of genome-wide association studies, first to our knowledge for PiB-PET, to identify novel genetic loci for this endophenotype. The APOE region showed the most significant association where several SNPs surpassed the genome-wide significant threshold, with APOE*4 being most significant (P-meta = 9.09E-30; β = 0.18). Interestingly, after conditioning on APOE*4, 14 SNPs remained significant at P < 0.05 in the APOE region that were not in linkage disequilibrium with APOE*4. Outside the APOE region, the meta-analysis revealed 15 non-APOE loci with P < 1E-05 on nine chromosomes, with two most significant SNPs on chromosomes 8 (P-meta = 4.87E-07) and 3 (P-meta = 9.69E-07). Functional analyses of these SNPs indicate their potential relevance with AD pathogenesis. Top 15 non-APOE SNPs along with APOE*4 explained 25-35% of the amyloid variance in different datasets, of which 14-17% was explained by APOE*4 alone. In conclusion, we have identified novel signals in APOE and non-APOE regions that affect amyloid deposition in the brain. Our data also highlights the presence of yet to be discovered variants that may be responsible for the unexplained genetic variance of amyloid deposition

    Local breast cancer spatial patterning: a tool for community health resource allocation to address local disparities in breast cancer mortality.

    Get PDF
    Despite available demographic data on the factors that contribute to breast cancer mortality in large population datasets, local patterns are often overlooked. Such local information could provide a valuable metric by which regional community health resources can be allocated to reduce breast cancer mortality. We used national and statewide datasets to assess geographical distribution of breast cancer mortality rates and known risk factors influencing breast cancer mortality in middle Tennessee. Each county in middle Tennessee, and each ZIP code within metropolitan Davidson County, was scored for risk factor prevalence and assigned quartile scores that were used as a metric to identify geographic areas of need. While breast cancer mortality often correlated with age and incidence, geographic areas were identified in which breast cancer mortality rates did not correlate with age and incidence, but correlated with additional risk factors, such as mammography screening and socioeconomic status. Geographical variability in specific risk factors was evident, demonstrating the utility of this approach to identify local areas of risk. This method revealed local patterns in breast cancer mortality that might otherwise be overlooked in a more broadly based analysis. Our data suggest that understanding the geographic distribution of breast cancer mortality, and the distribution of risk factors that contribute to breast cancer mortality, will not only identify communities with the greatest need of support, but will identify the types of resources that would provide the most benefit to reduce breast cancer mortality in the community

    Association of VPREB1 Gene Copy Number Variation and Rheumatoid Arthritis Susceptibility

    No full text
    Objective. Copy number variation (CNV) is a structural variation in the human genome that has been associated with multiple clinical phenotypes. B cells are important components of rheumatoid arthritis- (RA-) mediated immune response; hence, CNV in the regulators of B cells (such as VPREB1) can influence RA susceptibility. In this study, we aimed to explore the association of CNV in the VPREB1 gene with RA susceptibility in the Pakistani population. Methods. A total of 1,106 subjects (616 RA cases, 490 healthy controls) were selected from three rheumatology centers in Pakistan. VPREB1 CNV was determined using the TaqMan® CN assay (Hs02879734_cn, Applied Biosystems, Foster City, CA, USA), and CNV was estimated by using CopyCaller® (version 2.1; Applied Biosystems, USA) software. Odds ratio (OR) was calculated by logistic regression with sex and age as covariates in R. Results. A significant association between >2 VPREB1 CNV and RA risk was observed with an OR of 3.92 (95% CI: 1.27 - 12.12; p=0.01746) in the total sample. Whereas 2 of VPREB1 is a risk factor for RA in the total Pakistani population, while CNV<2 is protective in women

    Association of Fc Gamma Receptor 3B Gene Copy Number Variation with Rheumatoid Arthritis Susceptibility

    No full text
    Structural variations such as copy number variants (CNVs) have been associated with multiple autoimmune diseases. In this study, we explored the association of the Fc gamma receptor 3B gene (FCGR3B) copy number variation (CNV) with rheumatoid arthritis (RA) susceptibility and related serological traits in the Pakistani population. We also performed a meta-analysis of four published FCGR3B CNV studies along with the current study. A total of 927 subjects (597 RA cases, 330 healthy controls) were recruited from three rheumatology centers in Pakistan. Anti-cyclic citrullinated peptide (anti-CCP) antibodies and rheumatoid factor (RF) were measured in RA patients. FCGR3B copy number was assayed using the TaqMan&reg; CN assay (Hs04211858_cn, Applied Biosystems, Foster City, CA, USA) and the copy number was estimated by using CopyCaller&reg; software (version 2.1; Applied Biosystems, USA). Logistic regression was applied to calculate the odds ratio (OR) of RA risk associated with FCGR3B CNV using sex and age as covariates in R. Meta-analysis on four previously published studies and the current study was performed using the random-effect model. We observed a significant association between FCGR3B copy number &lt; 2 and RA susceptibility (OR = 1.53; 95% CI: 1.05 to 2.22; p = 0.0259) and anti-CCP seropositivity (OR 2.56; 95% CI: 1.34 to 4.89; p = 0.0045). A non-significant association of FCGR3B copy number &lt; 2 was also observed between increased rheumatoid factor (RF) seropositivity (OR = 1.74; 95% CI:0.93 to 3.26; p = 0.0816). Meta-analysis on 13,915 subjects (7005 RA cases and 6907 controls) also showed significant association of copy number &lt; 2 with the increased risk of RA (OR = 1.30; 95% CI: 1.07 to 1.56; p = 0.00671). FCGR3B copy number &lt; 2 is associated with increased RA risk and anti-CCP seropositivity

    Genetic insights of all-cause and vascular dementia through genome-wide association studies

    No full text
    Background Genome-wide association studies (GWAS) have identified more than 40 genetic loci associated with Alzheimer’s disease (AD). Although vascular dementia (VaD) is the second most common type of dementia after AD, the genetic contribution to VaD is understudied. We hypothesize that common forms of dementia will share genetic risk factors. We conducted the largest trans-ancestral GWAS of all-cause dementia (ACD), VaD, and examined the underlying biological mechanisms Method Donors from 16 population-based CHARGE cohorts, two national case-control consortia (ADGC, MEMENTO), and the UKBB contributed 46,533 and 4,078 cases of ACD and VaD, respectively. The overall sample (475,577) included European, African, Asian, and Hispanic ancestry. We conducted ancestry-specific and trans-ancestral meta-analyses using METAL and MR-MEGA, respectively. We explored the shared genetics of ACD with related disease traits and risk factors. Using a Bayesian approach, the level of polygenicity is explored across dementia and closely related traits, followed by a multi-trait GWAS including ACD with traits of identical polygenic background. Finally, genome-wide (GW) signals were functionally prioritized using a TWAS study. Result For ACD, we replicated ten known AD loci, including regions near APOE and BIN1. We found novel suggestive loci near SEMA4D, ANO3, AJAP1, HBEGF, and RBFFOX1. These loci were previously associated with energy transport throughout the brain (SEMA4D), neuronal excitability (ANO3), amyloid plaques (RBFOX1), and cerebral small vessel disease (-cSVD-, HBEGF). For VaD, one locus near APOE reached GW significance along with 22 suggestive, including SPRY2, FOXA2, AJAP1, and PSMA3, previously associated with hypertension, diabetes, and neuron maintenance. In addition to the genetic overlap with neurodegenerative processes, genetic risk loci for ACD exhibited overlap with vascular risk factors (T2D, blood pressure, lipid levels) and MRI markers of cSVD. Adjusting for SNP effects from traits with similar polygenic backgrounds revealed risk loci implicated in regulating cholesterol metabolism and maintaining neuronal mRNA levels Conclusion We leveraged data from 19 cohorts and population-based studies to assess the genetic contribution to ACD and VaD. GW suggestive signals included genes implicated in various brain activities. Bioinformatic parsing of the identified loci pointed to a genetic overlap of ACD with vascular risk factors and MRI markers of cSVD

    Investigating the GWAS-Implicated Loci for Rheumatoid Arthritis in the Pakistani Population

    No full text
    Rheumatoid arthritis (RA) is a complex and multifactorial autoimmune disorder with the involvement of multiple genetic and environmental factors. Genome-wide association studies (GWAS) have identified more than 50 RA genetic loci in European populations. Given the anticipated overlap of RA-relevant genes and pathways across different ethnic groups, we sought to replicate 58 GWAS-implicated SNPs reported in Europeans in Pakistani subjects. 1,959 unrelated subjects comprising 1,222 RA cases and 737 controls were collected from three rheumatology facilities in Pakistan. Genotyping was performed using iPLEX or TaqMan® methods. A total of 50 SNPs were included in the final association analysis after excluding those that failed assay design/run or postrun QC analysis. Fourteen SNPs (LINC00824/rs1516971, PADI4/rs2240336, CEP57/rs4409785, CTLA4/rs3087243, STAT4/rs13426947, HLA-B/MICA/rs2596565, C5orf30/rs26232, CCL21/rs951005, GATA3/rs2275806, VPS37C/rs595158, HLA-DRB1/rs660895, EOMES/rs3806624, SPRED2/rs934734, and RUNX1/rs9979383) were replicated in our Pakistani sample at false discovery rate (FDR) of <0.20 with nominal p values ranging from 4.73E-06 to 3.48E-02. Our results indicate that several RA susceptibility loci are shared between Pakistani and European populations, supporting the role of common genes/pathways

    Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip

    No full text
    <div><p>Current human fertilization <i>in vitro</i> (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved <i>in-vivo</i>-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo <i>in vitro</i> in a single droplet in a microfluidic environment to mimic the environment <i>in vivo</i> for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (<i>p</i><0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application.</p></div
    • …
    corecore