42 research outputs found

    Solving the paradox of the folded falling chain by considering horizontal kinetic energy and link geometry

    Get PDF
    A folded chain, with one end fixed at the ceiling and the other end released from the same elevation, is commonly modeled as an energy-conserving system in one-dimension. However, the analytical paradigms in previous literature is unsatisfying: The theoretical prediction of the tension at the fixed end becomes infinitely large when the free end reaches the bottom, contradicting to the experimental observations. Furthermore, the dependence of the total falling time on the link number demonstrated in numerical simulations is still unexplained. Here, considering the horizontal kinetic energy and the geometry of each link, we derived analytical solutions of the maximal tension as well as the total falling time, in agreement with simulation results and experimental data reported in previous studies. This theoretical perspective shows a simple representation of the complicated two-dimensional falling chain system and, in particular, specifies the signature of the chain properties.Comment: 13 pages, 4 figure

    Therapeutic protein expression platform of microbial system

    Get PDF
    A number of expression systems have been developed for the production of pharmaceutical products. Pichia pastoris and Escherichia coli expression system operate in our lab and express antibody fragment (scFv), cytokine, protein base adjuvant and vaccine and process enzyme. The expression platform are consisted of three part, first is strain generation , the second is fermentation process development in 250 ml fermentor and the last is process scale-up to 5 litter fermentor. Please click Additional Files below to see the full abstract

    The microbial antibodies secretion expression platform with scale down fermentors

    Get PDF
    Therapeutic antibodies have become one of the most effective therapeutics for human diseases such as cancer, inflammation and viral infection. The production of antibody-based drugs using microbial expression systems is more cost effective with ease of gene manipulation compared to mammalian expression systems. In our team, antibody fragments (ex: BsAb, scFv and Fab) were produced from methylotrophic yeast Pichia pastoris secretion expression system with the AOX1 as driven promoter or E. coli secretion expression system. To achieve high production yield for both system, we investigated fermentation parameter such as base medium, induction medium, induction condition, feeding strategy and pH. For the 250 ml fermentor Pichia system, the nitrogen have been add into glycerol fed medium and/or methanol induction medium and also compared base-medium, buffered glycerol-complex medium (BMGY) and basal salt medium (BS). The highest scFv production was yielded from the basal salt medium as base medium, glycerol fed medium plus nitrogen and multiple carbon source methanol induction medium. This process can yielded over 500 mg/L scFv. After scale-up from 250 ml fermentor to 5L fermentor, the methanol fed-back control system also applied on the 5 L fermentor, can achieve 1.7 g/L scFv in 5 days. The E. coli expression process has passed through screening for high production yield clones in 2 ml deep-well then confirmed by using 250 ml flask scale. Feeding medium, DO, pH etc, parameters were investigated by parallel 250 ml-fermenter. The parameters from 250 ml fermentor were validated by using 5 L fermenter. Under this scale-up procedure, the antibody Fab was 100 folds production yield, production deep well stage at 1 mg/L, production from 250 ml fermentor stage is 50-100 mg/L and production 5 L fermentor stage is over 35-90 mg/L. Although different antibodies will result in different production yield, building a reliable platform to predict production yield from antibody cell clones under deep well and shake flask stage serves a good scale-down model for future scale-up prediction

    Gram Level scFv expression platform of Pichia pastoris

    Get PDF
    The methylotrophic yeast Pichia pastoris secretion expression system has been developed for the antibody fragments (scFv) production platform. The platform includes three technology platforms, the first one is strain generation, the second is fermentation process development in 250 ml fermentor and the last is process scale up to 5 L. A recombinant scFv went through clone generation, include signal peptide tool box, normally yield 2.5 mg/L titer in deep well. Through the fermentation process development of induction medium composition and feeding strategy by Eppendorf Dasgip parallel 250 ml mini fermentor. During induction step, feeding 100% methanol as induction medium can only produce less than 50 mg/L scFv while feeding methanol-sorbitol mixture can significant increase the production yield to 306 mg/L in five days, about 6-folds increase in productivity. With the supply of additional nitrogen source during glycerol feeding step or at induction step, higher scFv production with 510 mg/L can be achieved. Thus, following the medium composition optimization, the production titer was improved 10 folds in 250 ml mini-fermentor stage. Moreover, when we switched the induction medium feeding strategy from DO-stat to the stepwise feeding, the titer increased form 510 mg/L to ~1000 mg/L and yielded another 2- folds improvement. During medium composition and feeding strategy optimization at 250 ml mini fermentor scale, the production titer could increase 20 folds. Overall, the production titer increased 400 folds from cell line generation to 250 ml fermentation parameter optimization. Furthermore, the process parameter can be scale-up to 5 L fernentor achieving \u3e 1 g/L. Recent progress to include BIP in the expression vector gave at least 2 fold improvement in scFv titer in shake flask, the new clone will be optimized in our established 250 ml and 5 L fermentation platform. Please click Additional Files below to see the full abstract

    Gram level scFv expression platform of Phichi pastoris

    Get PDF
    The methylotrophic yeast Pichia pastoris secretion expression system has been developed for the antibody fragments (scFv) production platform. The platform includes three technology platforms, the first one is strain generation, the second is fermentation process development in 250 ml fermentor and the last is process scale up to 5 L. A recombinant scFv went through clone generation, include signal peptide tool box, normally yield 2.5 mg/L titer in deep well. Through the fermentation process development of induction medium composition and feeding strategy by Eppendorf Dasgip parallel 250 ml mini fermentor. During induction step, feeding 100% methanol as induction medium can only produce less than 50 mg/L scFv while feeding methanol-sorbitol mixture can significant increase the production yield to 306 mg/L in five days, about 6-folds increase in productivity. With the supply of additional nitrogen source during glycerol feeding step or at induction step, higher scFv production with 510 mg/L can be achieved. Thus, following the medium composition optimization, the production titer was improved 10 folds in 250 ml mini-fermentor stage. Moreover, when we switched the induction medium feeding strategy from DO-stat to the stepwise feeding, the titer increased form 510 mg/L to ~1000 mg/L and yielded another 2- folds improvement. During medium composition and feeding strategy optimization at 250 ml mini fermentor scale, the production titer could increase 20 folds. Overall, the production titer increased 400 folds from cell line generation to 250 ml fermentation parameter optimization. Furthermore, the process parameter can be scale-up to 5 L fernentor achieving \u3e 1 g/L. Recent progress to include BIP in the expression vector gave at least 2 fold improvement in scFv titer in shake flask, the new clone will be optimized in our established 250 ml and 5 L fermentation platform Please click Additional Files below to see the full abstract

    Engineering of Escherichia coli protein expression process development

    Get PDF
    It almost 30% protein drugs are expression by Escherichia coli, because of rapid growth and high production yield. We have developed E.coli base system for recombinant protein expression, scFv, Fab and vaccine. In this study we introduce example about process development for nutrient components selection. Shaker flasks were used for different nitrogen and carbon components screening by DoE. Seven media formulations for E. coli fermentation were used in this study. By changing nitrogen and carbon source ratio, product titer of target protein could be optimized, at least 1.4 folds increased. The best result from shaker flask was used in 250 mL parallel fermenter and pH, dissolved oxygen, feeding/induction strategy were evaluated. The processes from seed culture to harvest only require 64 hours. The optimized time was reduced to 32 hours. The result showed that both target protein expression and cell density value were comparable, but the total process time was significantly reduced by half Please click Additional Files below to see the full abstract

    Metabolic re-patterning in chronic obstructive pulmonary disease airway smooth muscle cells

    No full text
    COPD airways are characterised by airway smooth muscle (ASM) thickening, partly due to ASM cell (ASMC) hyperplasia. Metabolic reprogramming involving increased glycolysis and glutamine catabolism supports the biosynthetic and redox balance required for cellular growth. We examined whether COPD ASMCs show a distinct metabolic phenotype that may contribute to increased growth. We performed an exploratory intracellular metabolic profile analysis of ASMCs from healthy non-smokers, healthy smokers and COPD patients, under unstimulated or growth conditions of transforming growth factor (TGF)-β and fetal bovine serum (FBS). COPD ASMCs showed impaired energy balance and accumulation of the glycolytic product lactate, glutamine, fatty acids and amino acids compared to controls in unstimulated and growth conditions. Fatty acid oxidation capacity was reduced under unstimulated conditions. TGF-β/FBS-stimulated COPD ASMCs showed restoration of fatty acid oxidation capacity, up-regulation of the pentose phosphate pathway product ribose-5- phosphate and of nucleotide biosynthesis intermediates, and increased levels of the glutamine catabolite glutamate. TGF-β/FBS-stimulated COPD ASMCs also showed a higher reduced to oxidised glutathione ratio and lower mitochondrial oxidant levels. Inhibition of glycolysis, and glutamine depletion attenuated TGF-β/FBS-stimulated growth of COPD ASMCs. Changes in glycolysis, glutamine and fatty acid metabolism may lead to increased biosynthesis and redox balance, supporting COPD ASMC growth.MRC-ABPI COPDMAP consortium G1001367/1This study was supported by the MRC-ABPI COPD-MAP consortium (G1001367/1) and a Dunhill Medical Trust grant (R368/0714). It was also supported by the NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London. The Canadian Respiratory Research Network (CRRN) is supported by grants from the Canadian Institutes of Health Research (CIHR), Institute of Circulatory and Respiratory Health; Canadian Lung Association (CLA); British Columbia Lung Association; and industry partners Boehringer-Ingelheim Canada, AstraZeneca Canada, Novartis Canada and GlaxoSmithKlin

    Impurity Incorporation in the Cu Electrodeposit and Its Effects on the Microstructural Evolution of the Sn/Cu Solder Joints

    No full text
    Impurity incorporation in the Cu electrodeposits as a result of the addition of organic additives in the Cu plating solution is investigated with four additive formulas. A common suppressor (polyethylene glycol, PEG) and chloride ions (Cl−) are added in the plating solution as a control additive formula. Three organosulfides, 3-mercaptopropanesulfonsäure (MPS), bis(3-sulfopropyl) disulfide (SPS), and 3-(2-benzthiazolylthio)-1-propanesulfonsäure (ZPS), are used as accelerators and individually formulated with PEG and Cl− as the other three experimental formulas. The additive formulas of PEG + Cl− and PEG + Cl− + ZPS result in high-level impurity incorporation and cause the microstructural instability of the Sn/Cu joints during thermal aging. Voids and Cu-impurity compounds (CuO and CuS2) are formed accompanying the growth of the intermetallic compounds (Cu6Sn5 and Cu3Sn) which severely degrades the Sn/Cu joints mechanically. When the additive formulas are changed to PEG + Cl− + MPS and PEG + Cl− + SPS, the impurity incorporation is significantly suppressed and thereby inhibits the formation of voids and Cu-impurity compounds. The strong dependence of additive formulas on the impurity incorporation is attributable to the delicate interaction (adsorption competition) between suppressor (PEG) and various accelerators, in which the molecular structures of the organosulfides play a key role
    corecore